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1. Introduction 

A growing literature on data envelop analysis (DEA) has emerged since the seminal 

paper of Charnes et al. (1978), offering numerous methods for examining the efficiency 

of decision-making units (DMUs). More importantly, according to Hollingsworth et al. 

(1999), there has been increasing interest in measuring the productive performance of 

health care services since the mid-1980s. Salo & Punkka (2011) argue that DEA models 

in health care give insights into which DMUs are more efficient than others when health 

indicators are viewed as outputs and when inputs consist of health-care investments and 

possibly contextual factors as well. For example, Garcia et al. (1999) analyze the 

efficiency of primary health units and explore how sensitive the DEA results are to the 

selection of output variables. In addition, Linna et al. (2010) have compared the 

performance of hospital care in four Nordic countries.  

However, there are some problems related to DEA approach. Non-parametric methods, 

such as DEA, give the highest available efficiency score one for many units already 

with relatively small amounts of output/input –variables, leading to results with low 

value of information. In addition, in case of low number of observations, the efficiency 

frontier might be based on outliers causing results to be sensitive. This is the case 

specifically in small countries, such as Finland, where the number of comparable health 

care organizations is typically small. These impose significant challenges when 

comparing sufficient approaches and methods to study the efficiency of health care 

units, and imply that especially parametric statistical methods might be problematic. 

The aim of this study is to analyze and test methods for comparing efficiency of 

different health care units in Finland. The analysis is done specifically considering the 

problems discussed earlier. The main research question of this study can be stated as 

follows: What is the most appropriate method for comparing the efficiency of health 

care units in Finland? The performance of analyzed methods is tested using the real data 

of Finnish dental health care units. The data is provided by THL and it is used to 

demonstrate what kinds of results different methods produce. 

This research report is organized as follows. Section 2 presents the basic DEA model 

and its most used variations and their advantages and disadvantages. Also the recent 

ratio-based efficiency analysis model (REA) (Salo and Punkka, 2011) is introduced. 

Section 3 focuses on sensitivity analysis, mainly on bootstrapping method. Section 4 

discusses how DEA is applied to health care sector, both nationally and globally, and 

what are the characteristics of this sector that the models need to consider. Section 5 

presents the example results of different models and analyzes their applicability. Section 

6 concludes.  
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2. DEA models 

2.1. CCR model 

The Charnes-Cooper-Rhodes model (CCR) is one of the most basic DEA models and 

was initially proposed by Charnes et al. in 1978. The basic idea of the CCR model is 

that it calculates the efficiency ratio for the DMUs based on their inputs and outputs and 

by comparing that ratio with other DMUs the model defines the efficiency of the DMU. 

Assume that a DMU consumes M types of inputs and produces N types of outputs. The 

kth DMU consumes xmk≥0 units of the mth input and produces ynk≥0 units of the nth 

output. The preference information about the relative values of inputs and outputs is 

represented by nonnegative weights vi and uj, respectively. The virtual input of the 

DMU is ∑mvmxmk and the virtual output ∑nunynk. We assume these measures to be 

strictly positive for all feasible weights. 

Based on virtual inputs and virtual outputs we define the efficiency ratio for each DMU. 

The efficiency ratio is 

        
              

             
 

       

       
 

Using linear programming we determine the optimal weights, which maximize the 

efficiency ratio for each DMU. The optimal weights usually vary from one DMU to 

another. If the DMU’s efficiency ratio is the best of all DMUs with some weights, the 

particular DMU is efficient and will have an efficiency score of one (100%). The 

efficient DMUs define an efficient frontier which serves as a point of reference in the 

evaluation of efficiency. 

If the DMU’s efficiency ratio is not the best of all with any weights, the DMU is 

inefficient. The score of an inefficient DMU is usually less than one and it represents 

how close to the efficient frontier the DMU can optimally be. For example, if the score 

of a DMU is 0.8, it means that the particular DMU can produce only 80 % of the 

outputs that an efficient DMU can produce with the same inputs. To become efficient, 

the DMU needs to produce 25 % more outputs with the same inputs (          ). 

The scores are always calculated with the most favorable weights for each DMU. 

(Cooper et al., 2007) 
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Figure 1: The CCR model 

Figure 1 (Cooper et al., 2007) presents a simple example. The efficiencies of stores (A-

H) are determined based on the sales and the number of employees. The store B is the 

only efficient DMU and determines the line of efficient frontier. The efficiency scores 

of other stores are calculated based on the relative distances from the frontier. For 

example, the efficiency score of A is 0.5 and the same of D is 0.75. The interpretation of 

the scores is that the sales of the store D are only 75 % of the sales of an efficient store. 

To become efficient, the store D needs to either increase sales by 33 % (           ) 

or decrease the number of employees by 25 %. 

We present here two different ways to calculate the efficiency scores. The first version 

aims to minimize inputs while satisfying at least the given output levels and the other 

version attempts to maximize outputs without requiring more of any input values. The 

versions are called input-oriented model and output-oriented model, respectively. 

2.2. BCC model 

The CCR model is built on the assumption of constant returns to scale, meaning that if 

all inputs are doubled, the output is also expected to double. The Banker-Charnes-

Cooper (BCC) model, originally proposed by Banker et al. in 1984, is an extension of 

the CCR model. In their paper, Banker et al (1984) provide models for estimating both 

technical and scale efficiencies of DMUs. The BCC model takes into account that the 

productivity at the most productive scale size may not be attainable for other scale sizes 

at which a given DMU is operating. Therefore, the BCC model estimates the pure 

technical efficiency of a DMU at a given scale of operation. 

The only difference between the CCR and BCC models is the convexity condition of 

the BCC model, which means that the frontiers of the BCC model have piecewise linear 

and concave characteristics, which lead to variable returns to scale. That is, the BCC 
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model assumes increasing, decreasing and constant returns to scale at some point of 

the frontier (Figure 2). (Cooper et al., 2006, pp. 87-88) 

 

Figure 2: Production frontiers of the BCC model 

Figure 3 (Cooper et al., 2007) illustrates the difference between the CCR model and the 

BCC model more precisely. The solid line, passing through A, B and C, represents the 

BCC model, whereas the dash line, passing through only B, represents the effective 

frontier of the CCR model. In general, the CCR efficiency cannot exceed the BCC 

efficiency. For example, let’s calculate the BCC and CCR efficiencies of DMU D in 

Figure 3. The BCC efficiency is approximately            , whereas the CCR-

efficiency of DMU D is smaller:            . 

 

Figure 3: The BCC (solid line) model vs. the CCR (dash line) model 

2.3. Weight restrictions 

When using previous models (CCR, BCC), it is possible that there are many zeros in the 

optimal weights (vi*,uj*) of an inefficient DMU. A zero means that the particular input 

or output is effectively ignored in the efficiency evaluation and it is usually a sign that 

the DMU has a weakness in the corresponding input/output compared with other 

DMUs. The assumption of nonnegative weights is reasonable when we do not have any 

information about the relative values of inputs and outputs. 
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There are situations, however, where additional information is available and where one 

is willing to restrict the multiplier vectors v and u more than just by nonnegativity 

requirement. For these situations Cooper et al. (2007) present two methods: the 

assurance region method and the cone-ratio method. In the both methods the main idea 

is to restrict the feasible region of the weights. 

The assurance region approach imposes constraints on the relative magnitude of the 

weights for special items. For example, we can add a constraint on the ratio of weights 

for input 1 and input 2 as follows: 

     
  

  
       

where L1,2 and U1,2 are lower and upper bounds of the ratio v2/v1. 

In the cone-ratio method we restrict the feasible region of weights to be in the convex 

cone generated by admissible nonnegative direction vectors. This method can be 

regarded as a generalization of the assurance region approach. It can deal with all the 

elements of input/output at the same time when in the assurance region method we have 

to define an equation for every pair of input/output elements. 

Generally, by adding these constraints the efficiency score of a DMU is reduced and a 

DMU previously characterized as efficient may be found to be inefficient. Therefore, 

one has to be careful in choosing these bounds. 

2.4. REA 

When using the traditional DEA models, the efficiency scores of DMUs’ represent the 

best possible efficiencies using the weights that are most favorable to each DMU. 

Traditional results do not include information how the efficiency score changes when 

using different input/output weights even though other weights may reflect relevant 

situations. 

Salo and Punkka (2011) present a new model for analyzing efficiencies: the ratio-based 

efficiency analysis (REA). In REA model the efficiency scores of DMUs’ are evaluated 

with every feasible weight combination. One can then examine for example how the 

efficiency scores change or what the ranking intervals of the DMUs are. With this 

information the decision maker sees if the efficiency of a DMU is robust. 

Also the efficiency dominance can be examined. DMUk dominates DMUl if the 

efficiency ratio of DMUk is at least as high as that of DMUl for all feasible weights, and 

moreover, there exist some weights for which its efficiency is strictly higher. With this 

kind of examination the efficiency comparison can easily be made. 
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Another advantage of the REA model is that it is not as sensitive to outliers as the basic 

DEA models. In the basic models the introduction or removal of a single outlier may 

shift the efficient frontier drastically and thus disrupt efficiency scores. Using the REA 

ranking intervals, the similar manipulation of the sample changes the rankings at most 

only by one unit. The REA model is also suitable for situations where the number of 

DMUs is small, because the results are not computed relative to an efficient frontier. 
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3. Sensitivity analysis 

3.1. Bootstrapping 

3.1.1. Method 

The measures of efficiency are relative ones and provide means for ranking different 

decision making units (DMUs), i.e. health care units in the current study. Therefore, it is 

also important to analyze the sensitivity of the estimated efficiencies to the sampling 

process. One method to address this issue is a bootstrap-method. The introduction of the 

bootstrap-method dates back to Efron (1979), when he showed that the method works 

satisfactorily on a variety of estimation problems, such as the estimation of the variance 

of the sample median and confidence intervals. As noted by Xue and Harker (1999); 

although the bootstrap is a computationally intense method, the modern computer is, 

however, more than sufficient for the computation required. 

The problem solved by the bootstrap is mainly an estimation problem, and the principle 

of the method is simple and straightforward. Consider a random sample   

             from a population with an unknown distribution F. The goal is to 

estimate the sampling distribution of some pre-specified random variable R(X,F), based 

on the real data set  , where                 denotes the observed realization of 

              . (Efron, 1979, Xue and Harker, 1999) To clarify this, bootstrap-

method is a computer-based method for assigning measures of accuracy to sample 

estimates by constructing a number of resamples of the observed dataset with equal 

size, each of which is obtained by random sampling with replacement from the original 

dataset. 

To illustrate this, consider the following coin-flipping example. We flip the coin and 

record whether it lands heads or tails. Let               be 10 observations from 

the experiment, where      if the coin lands heads, and 0 otherwise. Instead of using 

normal theory, such as t-statistic, we can use the bootstrap method and resampling to 

derive the distribution of sample mean  . First, a bootstrap resample can be derived by 

resampling the data randomly with replacements. A first resample could look like for 

example like this:   
                                   . It is important to notice 

that the resample can include duplicates, and the number of data points in the bootstrap 

resample have to be equal to the number of data points in the original observation data. 

The first bootstrap mean   
  can be now easily calculated. By repeating this procedure 

for several times, an empirical bootstrap distribution of sample mean can be derived. 

This distribution can then be used for further analysis. 
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3.1.2. Applications 

Since the introduction, the bootstrap has quickly become a popular and powerful 

statistical tool used to address some problems in statistical analysis. Simar (1992) was 

the first to use the bootstrap method in the non-parametric frontier analysis. He notes 

that in almost all cases, the sampling distributions are not available due to the non-

linearity of the estimation procedures or the lack of parametric distributional 

assumptions on the residuals, and implies that in this case bootstrapping can help to get 

an insight on those issues. He concludes that the bootstrap is an appealing tool in the 

context of frontier estimation and efficiency analysis. The method provides not only a 

means to analyze the sensitivity of the ranking of the different units in terms of their 

inefficiency, with a measure of the statistical significance of the difference between the 

efficiencies, but it also provides proxy for the sampling distribution of estimators when 

analytical results are not yet obtained.  

On the other hand, Atkinson and Wilson (1995) have used the bootstrap to construct the 

confidence intervals for the means of the DEA efficiency scores. Furthermore, they note 

that the bootstrap is one of several resampling methods which employ Monte Carlo 

techniques to approximate the small-sample distributions of estimators. In addition, they 

agree with Simar (1992) that the method is often of particular use in cases where 

analytic results are not available. Similarly, Ferrier and Hirschberg (1997) have derived 

the confidence intervals and a measure of bias for the DEA efficiency scores. 

Simar and Wilson (1998) have utilized bootstrapping in analyzing the sensitivity of the 

DEA efficiency scores related to the variations of the estimated frontier. They clarify 

our discussion by stating that the bootstrapping is based on the idea of repeatedly 

simulating the data-generating process (DGP) usually through resampling, and applying 

the original estimator to each simulated sample. This way the resulting estimates mimic 

the sampling distribution of the original estimator. However, the key and also the 

greatest challenge, is to clearly define the DGP, i.e. the function that is supposed to 

characterize the entire population from which the data set has been drawn. Finally, Xue 

and Harker (1999) use the bootstrap-method to obtain a theoretically appropriate 

solution to the problem posed in the regression analysis of the DEA efficiency scores 

due to the inherent dependency among the DMUs’ efficiency scores. 

Grosskopf (1996) has reviewed literature regarding the bootstrapping, and finds the idea 

of using the bootstrapping to construct confidence intervals extremely appealing. She 

also considers that Simar and Wilson (1998) have suggested a very reasonable way of 

thinking about the DGP, and provided innovative solutions to the boundary and bias 

problems involved with applying bootstrapping to non-parametric technical efficiency. 
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Efron and Tibshirani (1986) have addressed the issue of how many bootstrap-

replications one must take. They conclude that for the bootstrap-estimate of standard 

error already 25 Monte Carlo replications give reasonable results, whereas there is little 

improvement past 100 replications. On the other hand, they point out that confidence 

intervals are a fundamentally more ambitious measure of statistical accuracy than 

standard errors. Based on calculations of Efron (1987), Efron and Tibshirani (1986) 

suggest a rough minimum of 1000 for the number of Monte Carlo bootstraps necessary 

to achieve the bootstrap confidence intervals. Smaller values such as 250 replications 

can be somewhat useful for calculating percentile intervals.  

More recent studies have also applied the bootstrapping in studying different health care 

units. For example, Staat (2006) presents results of a research using a DEA-bootstrap 

approach to study the efficiency of hospitals in Germany. He states that efficiency 

estimates based on DEA-type methods are biased upwards, and the bias depends on 

sample size N as well as on the curvature of the frontier and the magnitude of the 

density at the frontier. Furthermore, he proposes that in order to obtain bias corrected 

estimates for the multiple-input-multiple-output case, the bootstrap method must be 

applied. In addition, Medin et al. (2010) estimate cost efficiency scores for the 

performance of university hospitals in the Nordic countries by using the bootstrap bias-

corrected procedure. 

Based on the literature review, the bootstrap is considered to be specifically useful in 

cases where the sampling distributions and analytic results are not available, or when 

the sample size is small. The method is also considered to be simple and straightforward 

to derive estimates of standard errors and confidence intervals for complex estimators of 

complex parameters of the distribution, and providing means to control and check the 

stability of the results. The recommendations of the situations when to use the bootstrap 

procedure suggested by Adèr et al. (2008) are consistent with the findings discussed 

above, and are summarized in the Table 1.  
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Table 1: Situations where bootstrapping procedures are useful 

When the theoretical distribution of a statistic of interest is complicated 

or unknown. 

Since the bootstrapping procedure is distribution-independent, it 

provides an indirect method to assess the properties of the distribution 

underlying the sample and the parameters of interest that are derived 

from this distribution. 

When the sample size is insufficient for straightforward statistical 

inference. 

If the underlying distribution is well-known, bootstrapping provides a 

way to account for the distortions caused by the specific sample that 

may not be fully representative of the population. 

When power calculations have to be performed, and a small pilot sample 

is available. 

Most power and sample size calculations are heavily dependent on the 

standard deviation of the statistic of interest. If the estimate used is 

incorrect, the required sample size will also be wrong. One method to 

get an impression of the variation of the statistic is to use a small pilot 

sample and perform bootstrapping on it to get impression of the 

variance. 

 

On the other hand, the bootstrap-method does have also limitations. Campbell and 

Torgerson (1999) explain that many of the criticism presented in the literature are 

related to the simplicity of the assumptions of the model (Briggs et al., 1997, Campbell 

and Torgerson, 1997, Mooney and Duval, 1993). Therefore, the method may conceal 

the fact that many important assumptions are being made, such as independence of 

samples, when undertaking the bootstrap analysis.   

Based on the literature review, it can be concluded that the bootstrap-method is 

applicable for sensitivity analysis in non-parametric frontier analysis, and for 

constructing confidence intervals for the DEA efficiency scores. The method has been 

applied also multiple times in studying different health care units. These findings 

suggest that the bootstrap-method is highly potential for studying the efficiency of 

health care units in Finland. 
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3.2. Other methods for sensitivity analysis 

Bootstrapping is not the only method for sensitivity analysis. As Atkinson and Wilson 

(1995) imply, also other resampling methods exist that employ Monte Carlo techniques, 

such as jackknifing, cross-validation, and permutation tests. Completely other approach 

to sensitivity analysis is to consider the degrees of freedom in the envelopment model. 

As Cooper et al. (2006) notes, the number of degrees of freedom will increase with the 

number of DMUs and decrease with the number of inputs and outputs. On the other 

hand, algorithmic approaches relate to the use of algorithms that avoid the need for 

additional matrix inversions when generating solutions in the usual simplex algorithm 

computer codes (Cooper et al., 2006, Charnes et al., 1984, Charnes and Cooper, 1968). 

The basic idea of metric approaches is to use concepts such as distance or length in 

order to determine “radii of stability” within which the occurrence of data variations 

will not alter a DMU’s classification from efficient to inefficient status (Cooper et al., 

2006). Finally, multiplier model approaches are used in cases where the DMUs are 

numerous and it is not clear which ones require attention, unlike the other approaches 

above that treat one DMU at a time (Cooper et al., 2006, Thompson et al., 1994, 

Thompson et al., 1996).  However, due to the scope of this study, these methods are not 

discussed here any further. 
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4. Applying DEA to health care 

4.1. Literature review - previous applications 

During the 1990’s Data Envelopment Analysis rapidly became an acceptable method of 

efficiency analysis. Seiford (1994) lists 472 published articles and Ph.D. dissertations in 

his DEA bibliography already 1992. Less than a decade later Tavares (2003) includes 

almost 3200 items in his bibliography. Ray (2004) points out, however, that as instant as 

the success of DEA in management science was, in economics the welcome has been 

much less enthusiastic due to its shortcomings. 

DEA models have been used in healthcare analysis since the early 1980’s. 

Hollingsworth et al. (1999) reviewed non-parametric studies of health care efficiency 

made up to the end of 1997. Number of studies showed sharp increase towards the end 

of the period, half of them being published between years 1994 and 1997. Over 60% of 

the total 91 studies used DEA as the only method of analysis. Roughly a quarter used 

regression analysis in addition, mainly to regress factors on the efficiency scores in an 

attempt to identify the determinants of efficiency. Only one tenth of the studies 

combined DEA with newer developments such as Malmquist index or the use of 

efficiency scores as the dependent variable in secondary regression analysis. Studies of 

the early times are characterised of being limited with only basic DEA, since the 

methodology was still new and developing. 

Later Hollingsworth (2003) updated the review with latest publications including 

studies up to 2002. Now the total number of studies was 188 and the trend was still 

growing. Figure 4 illustrates the growing popularity of DEA in healthcare efficiency 

analysis.  

 

Figure 4: Number of DEA studies in health care efficiency analysis 
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With the latest research included the percentage of studies using DEA alone had 

dropped to 50. Proportion of the studies using DEA with regression remained in one 

quarter. Malmquist index and SFA, however, had gained significantly more popularity 

and represented now already one quarter of all studies. Hollingsworth notes that only a 

small part of the studies use weight restriction models or analysis of returns to scale. 

Similarly, only small part uses statistical or sensitivity analysis. These additions he sees 

as a major opportunity for improvement for future studies. Non-parametric techniques, 

such as stochastic frontier analysis, also gained popularity over the period of the two 

studies.  

Overall finding of Hollingsworth was that in single sector studies DEA figures of public 

sector are higher than in private sector, indicating less variance in public sector. When 

compared across the whole healthcare sector, public hospitals still get higher scores, 

indicating in addition higher efficiency. Because of the large variance in research 

methods and on-going development of the techniques, Hollingsworth calls, however, for 

caution in comparisons.  

As an example of a single study, Tsai and Molinero (2002) studied DMUs consisting of 

several activities and found that it is possible for a DMU to appear to be operating 

efficiently with constant returns to scale, but this may hide scale inefficiencies when the 

individual activities are studied separately. They further developed returns to scale 

analysis by incorporating a possibility of variable returns to scale for each one of the 

component activities a DMU is involved in. Two formulations were developed: The 

first considers the best overall allocation of resources between all the DMUs involved in 

the analysis and the second considers inefficient DMUs aiming to produce the best 

internal allocation of resources between the component activities in order to minimise 

overall inefficiency. Authors note that their model relies on priority judgments and thus 

includes an element of subjectivity. Returns to scale analysis appear, however, to be 

robust to the choice of weights in the model. 

4.2. Returns to scale 

The use of variable returns-to-scale assumption has to be very well argued. According 

to the point of view, which supports the use of assumption, there are situations where 

the scale of a unit has a specific influence on the unit’s productivity (Cooper et al., 

2007).  Based on this point of view, the medium-sized units usually have the possibility 

to be more efficient than the very small or very large units. This means that the marginal 

productivity of the medium-sized units is relatively high; with one additional unit of 

input, they can produce more output than the other units. Especially the large units can 

be significantly less efficient than the smaller units. This idea is implemented from 
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economics and it is reasonable to consider taking it into account when analyzing 

various-sized units. For example, with BCC model, one can compare the units from 

different scales at the same time and get useful results. 

However, one has to be sure that the main reason for the poor performance of large 

units is the scale and that one cannot do anything to change that situation. The particular 

assumption accepts the weakness of large units as a fact and does not encourage finding 

a solution for that. There surely are some ways to develop the operations of large units 

to be better comparable with medium-sized units. 

Also, there might be other reasons for the poor performance of large units than the 

scale. Those reasons and problems easily remain hidden if one does not consider the 

situation closely. For example, in health care the largest units are often responsible to 

receive the most difficult cases. Those cases require more resources and thus the 

efficiency, calculated by the quantity of operations, decreases. Now, if the patient 

structure is not linearly dependent on the size of the unit, the BCC model gives flawed 

results. 

In economics, there is also another idea about the scale and marginal productivity, 

called the economies of scale. It simply means that the larger the company, the smaller 

the marginal costs. This leads directly to the greater efficiency. This phenomenon is 

usually seen in commodity production and thus it cannot be straightforwardly applied to 

health care, which is mostly a service business. 

The point of presenting the idea of economies of scale is to show that it is not clear that 

large units automatically are less efficient than smaller units. Additionally, the 

assumption of variable returns to scale is so powerful that, if applied without a proper 

research, it might result more damage than advantage. Therefore, in many cases, it is 

safer to use the constant returns-to-scale assumption. If the scale differences are large, 

the units can be categorized by their size and compared to the units of same category 

with constant returns-to-scale assumption.  

4.3. Weight restrictions 

The use of weight restrictions seems very reasonable. Without restricting the weights, 

the relative values of outputs and inputs can be unrealistic. Often the optimal weights 

include zero, which means that the particular input or output type is not considered in 

the calculation of efficiency score at all. In health care sector, an example is that in the 

calculation of efficiency, only the number of nurses is considered, and the number of 

doctors is irrelevant. With weight restrictions, one can set upper and lower limits for the 

relative values of inputs and outputs. 
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Setting the restrictions has to be done carefully, because the limits are likely to be seen 

in the optimal weights. The restrictions should be based on statistical analysis or expert 

opinion. In both cases it is recommended to start with conservative weights and proceed 

step by step to more radical weights, following all the time how the efficiency scores 

change. 

4.4. Geographical differences 

O’Neill et al (2008) reviewed 79 DEA studies from 1984-2004 and found that there are 

fundamental differences in the methods used in DEA healthcare research between 

Europe and North-America. European studies use on average significantly more 

sophisticated methodology than their American counterparts. In defining efficiency 52% 

of the European studies used the more encompassing allocative method (requiring the 

relative price information of inputs and outputs) whereas only 12% of the American 

studies did the same. Thus, a vast majority of American studies settled with the simple 

technical efficiency analysis. European studies were also more comprehensive within 

the time frame, with 60 % conducting a multi-year study compared to the corresponding 

figure of 25 % in American studies. American researches used in addition far less DEA 

together with other methods such as stochastic frontier analysis (SFA) or the Malmquist 

index. European studies used less input variables (on average 3.8) but in turn more 

outputs (5.4) compared to American researches (4,8 and 4.7 respectively). The study 

sizes showed a massive difference between the two continents: European studies 

covered on average 74 DMUs whereas Americans had on average 440. 

DEA and SFA methods have been found to produce similar efficiency estimates when 

applied to European hospitals (Jacobs, 2001) but divergent results in the US (Chirikos 

and Sear, 2000). According to O’Neill et al (2008) this indicates that allocative 

inefficiency is more of a problem in the US than in Europe. Such inefficiencies arise 

when hospitals compete by purchasing expensive equipment to attract physicians and 

patients. While this strategy might be efficient locally, it is not optimal nationwide 

because it leads to excess hospital capacity and partially empty surgical facilities for 

some trendy procedures such as transplants. All in all, healthcare is much more 

centralised and regulated in Europe, and Health Authorities influence resource 

allocation, reimbursements and hospital priorities.   

In 1983 America changed the hospital reimbursement model from inpatient-based to 

diagnosis-related group (DRG)-based system. In DRG inpatient cases are classified into 

clinical groups based on expected resource use. When reimbursements were no longer 

based on total costs but individual cases, it changed radically the motivation of hospitals 

to get rid of the patients. Hence, DRG-adjusted discharges became a natural choice for 
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output, while use of inpatient days dropped steadily to reach zero percent soon after the 

new millennium. The similar course of action started in Europe a decade later, but 

between 2001 and 2004 still a half of the European studies used inpatient days as one of 

the outputs.  

4.5. Quality vs. quantity 

Most of the DEA studies in healthcare have used quantitative outputs in the models, and 

there have been only few studies trying to implement quality measures in the outputs. 

Of course, one reason could be the lack of validated measures how to evaluate quality. 

For example, if mortality rates are used as quality outcomes, hospitals treating the 

sickest or most severely injured patients will become inefficient compared to their 

peers. (Nayar and Ozcan, 2008) 

Newhouse (1970) argues that quantity and quality are two commodities to which the 

resources may be allocated. Since the resources are limited, there is a quantity-quality 

trade-off. It is usually thought that increasing quality may require more labor and 

capital, whereas efficiency improvements may lead to poorer performance in terms of 

quality. Laine et al. (2005) have studied the association between quality of care and 

technical efficiency in long-term care, and they state that defining and measuring is a 

multidimensional and complex problem. 

DEA can be used to measure both dimensions of healthcare performance: technical 

efficiency and quality. Nayar and Ozcan (2008) studied whether the growing concern 

that hospitals are improving their efficiency at the expense of quality is valid. Nayar and 

Ozcan analyzed first the efficiency of acute care hospitals using measures of quality in 

DEA. Then the results were compared to a DEA model that uses measures of technical 

efficiency as inputs and outputs. 

Nayar and Ozcan found that hospitals producing quantitative outputs efficiently were 

also producing quality outputs efficiently. Two thirds of the 53 hospitals analyzed were 

performing poorly in terms of both efficiency and quality. In addition, none of the 

hospitals was technically efficient but inefficient with respect to quality. Thus, Nayar 

and Ozcan’s study does not support the efficiency-quality trade-off. In fact, it might be 

quite the opposite as some of the technically inefficient hospitals were performing well 

when it comes to quality. 

4.6. Choosing variables 

Choosing the input and output variables is an important phase of efficiency analysis. In 

this project, we do not focus closely on this phase, because it would require much more 

substance and understanding of the health care sector than we currently have. However, 



Hynninen, Ollikainen, Putkonen, Tenhola, Vähä-Vahe 17 

we present here the rule of thumb (Cooper et al., 2007) considering the number of 

variables: 

                    

where n is the number of units, m the number of input variables and s the number of 

output variables. If this equation does not hold in the efficiency analysis, quite a few 

units might be seen as efficient. However, the number of efficient units can be 

decreased by using weight restrictions for example. 

Cooper et al. (2007) also recommend starting the analysis with a small number of 

variables and increasing the number one by one, following constantly how the results 

change. It is better to have few important variables than too many less important even 

though the model might not be as accurate. 
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5. Results of data analysis 

5.1. Dataset 

In order to illustrate the differences between different DEA model modifications and 

assess the applicability of different DEA models to efficiency measurement in 

healthcare, we were provided with a dataset by THL. The dataset covered the year 2010, 

included 34 individual DMUs, and contained several input and output variables from 

the area of dental care in Finland. DMUs were basically different geographical 

healthcare areas, such as cities, that are autonomous in their resource allocation 

decisions. The dataset is presented and can be observed in the Appendix 1. 

For this report, the DMU names were coded according to their relative sizes. The letter 

in a DMU name represents the size category (the largest DMUs in category A and the 

smallest in category C). The trailing number distinguishes the DMUs within a 

category.
1
 

5.1.1. Variables 

The dataset consisted of 4 input variables and 7 output variables. The variables are 

presented in Table 2. 

Table 2: Variables of the provided dataset 

Input variables Description 

Total costs Total financial costs of the year 2010 

Number of dentists Average number of dentists during 2010 

Number of dental hygienists Average number of dental hygienists during 2010 

Number of dental assistants Average number of dental assistants during 2010 

  

Output variables Description 

Number of treated patients in age group s1*  

Number of treated patients in age group s2*  

Number of treated patients in age group s3*  

Number of treated patients in age group s4*  

Number of treated patients in age group s5*  

Number of treated patients in age group s6*  

Weighted sum of operations completed Sum of operations completed in 2010. Operations 

were weighted by cost factor to take into account 

varying expenses between operation types. 

*) Age order: s1 < s2 < s3 < s4 < s5 < s6 (the oldest) 

                                                 

1
 Classification was based on the output variable weighted sum of operations completed (introduced later 

in the text). DMUs having aforementioned variable’s value over 200 000 were classified in category A, 

DMUs having the value between 100 000 and 199 999 were classified in category B, and rest of the 

DMUs were classified in category C. 
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Input variables 

The obtained input variable set can be divided into two mutually exclusive subsets. 

Another subset includes three variables (number of dentists, number of dental 

hygienists, and number of dental assistants) that represent the input effort of three 

different personnel groups counted in average man-years according to each personnel 

group. The other input variable subset consists of only the total costs variable including 

the salaries of the three aforementioned personnel groups but also other dental care 

related costs. 

Output variables 

Similarly to our input variables, we have two mutually exclusive output variable 

subsets. The first consists of six output variables counting the number of treated patients 

according to their age group. The second subset consists of the variable weighted sum of 

operations completed including all the treatments counted in the first subset. Instead of 

measuring the treated patients in the aforementioned age groups, the variable in the 

second output variable subset counts individual operations that were completed in 2010. 

In addition, the counted operations are weighted by a cost factor that takes into account 

varying costs between different dental care operations (e.g. root treatment vs. tooth 

extraction). 

5.2. Analyses 

In order to illustrate the differences between different DEA models, we ran several 

example results from the provided dataset. We wanted to sustain some degree of 

simplicity and thus decided not to conduct all possible DEA analyses with all possible 

variable combinations.  Therefore, we selected numbers of different dental care 

personnel groups as our main input variables and weighted sum of operations completed 

as our main output variable. However, for the sake of curiosity, we ran an additional 

CCR-I analysis in which we used total costs instead of personnel numbers as an input 

variable to compare the obtained results with each other. 

5.2.1. Variable selection 

For analyses, we had to choose between overlapping variables in our dataset. As 

mentioned before, selected input variables were 1) Number of dentists, 2) Number of 

dental hygienists, and 3) Number of dental assistants. Our decision to choose these 

variables instead of total costs was based on two reasons. Firstly, single input variable 

would not have allowed us to illustrate the feature of DEA that allows variable weights 

to vary in the positive real axis. Secondly, personnel numbers are indifferent to different 

wage levels between geographical areas. If we want dental care to be offered 
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everywhere in Finland, wage levels should be taken as given and thus they should not 

be included in analyses. 

For the output variable selection we had two different options. The first subgroup 

contained numbers of treated patients according to their age group. As described earlier 

in this report, DEA allows variable weights to vary in the allowed space. We did not 

want to base our results on data that allows DEA models to consider different age 

groups of patients as more important than other age groups. If we wanted to use these 

numbers of treated patients as our output variable, these age groups should have been 

combined into single variable containing all the treated patients no matter what is their 

age group. However, in the end we decided to choose weighted sum of operations 

completed as our main output variable due to the fact that it in a sense contains the 

aforementioned figures and in addition takes into account varying costs between 

different dental care operation types. 

5.2.2. CCR-I 

Basic CCR-I (input oriented CCR) results are presented in Appendix 2. The most 

notable detail is that 5 DMUs out of 33 are considered as efficient. The all five are 

categorized as small (C) or medium-sized (B) DMUs. Otherwise ranking does not seem 

to obey any specific pattern. The worst-performing DMU, A6, got an efficiency score of 

0.604, which means that in relation to the efficiency frontier it can produce only 60.4% 

of output with the same amount of input. Average efficiency score in these results was 

0.85997 with standard deviation of 0.1095. 

5.2.3. CCR-I - Largest DMUs 

As the DEA should be applied to a group of to some degree similar DMUs, we wanted 

to test how it affects the efficiency scores of large DMUs (category A) and their relative 

rankings in case only large DMUs were included in the analysis. Figure 5 and Table 3 

below present the efficiency scores of the CCR-I analysis conducted only for the group 

of large DMUs. Table 3 also lists the efficiency scores received in the original CCR-I 

that included all the DMUs. 



Hynninen, Ollikainen, Putkonen, Tenhola, Vähä-Vahe 21 

 

Figure 5: CCR-I efficiency scores of the largest DMUs 

 

Table 3: CCR-I efficiency scores 

of the largest DMUs 

DMU SCORE 
SCORE IN 

ORIGINAL CCR 

A2 1 0,9734 

A5 1 0,8809 

A4 0,8448 0,7911 

A7 0,7702 0,7256 

A1 0,7562 0,7330 

A3 0,7475 0,7170 

A6 0,7153 0,6037 
 

 

As we can see in the Table 3, large DMUs seem to receive consistently higher 

efficiency scores if the largest DMUs are compared only with each other. However, the 

ranking order within the group of large DMUs remains the same with only one 

exception: DMUs A7 and A1 change places. However, the efficiency difference 

between these two DMUs is relatively small in the both results. 

5.2.4. CCR-I - Weighted sum of operations vs. total costs 

Since the input variables in our dataset overlapped to some extent, we wanted to 

validate our results by producing similar CCR-I results where total costs would replace 

the personnel input variables. Intuitively it would be reasonable to expect somewhat 

similar results to original CCR-I results. These alternative CCR-I results are presented 

in Appendix 6. 

If we compare these two sets of results, we can see that differences in efficiency scores 

and ranking vary quite a lot. The DMU C1 experiences the most radical change in its 

efficiency score and ranking. Its efficiency score decreases by 29.8 percentage points 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
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compared to the original CCR-I results. At the same time, its ranking decreases by 21 

from 10
th

 place to 31
st
. On average, the absolute value of the score difference is 11.2 

percentage points, and the average absolute value of ranking difference is 7.5. 

These results suggest that variable selection is one of the most essential parts of a DEA 

analysis. 

5.2.5. BCC-I 

Basic BCC-I results are presented in Appendix 3. Compared to our results from original 

CCR-I, BCC-I seem to double to amount of efficient DMUs. Now also the biggest 

DMUs seem to perform relatively better than in CCR-I model. Three DMUs from the 

category A received the best efficiency score, 1. Taking into account that the category A 

itself is quite small, as it contains only seven DMUs, large DMUs seem to perform 

relatively well when efficiency scores are determined using BCC model. 

Another notable detail is that the worst performing DMUs perform a bit better than in 

the results determined with CCR-I. Average efficiency score in BCC-I results was 

0.9039 which means that on average each DMU got 4.4 percentage points higher 

efficiency score compared to CCR results. Standard deviation of the scores was 0.1046. 

The received BCC-I results are in line with the theory discussed earlier in this report. As 

BCC allows variable returns to scale, efficiency scores are at least as high as in CCR 

results. 

5.2.6. Weight restricted BCC-I 

In basic CCR and BCC models, variable weights are allowed to vary in non-negative 

real axis. Intuitively this allows efficiencies to be measured in points where importance 

differences (weight differences) between variables are irrelevantly large. In order to 

gain understanding on how deep impact variable weight restrictions have on results, we 

conducted another BCC-I efficiency measurement with the following input variable 

weight restrictions: 

  
                  

                           
   

  
                  

                           
   

    
                           

                           
   

For example the first restriction means informally that in the measurement, dentists are 

considered at least as important as dental hygienists but at maximum five times as 

important. We do not state that these are the correct boundaries for the weights but 
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instead we want to illustrate their effect on the results. The constraints were invented 

without expert opinions. 

The results of Weight Restricted BCC are presented in Appendix 4. Compared to the 

basic BCC the number of efficient DMUs drops by three. On average DMUs are 4.15 

percentage points less efficient as the average efficiency score drops to 0.8624 with 

standard deviation of 0.1122. Interesting detail is that every DMU in our sample 

receives the same or lower efficiency score than in the basic BCC results, even though it 

could have been possible to receive higher scores since irrelevant variable weights no 

more define the efficient frontier. 

As a result of the weight restrictions, DMUs that performed significantly worse were 

the ones having a single personnel group of relatively small size. In the basic BCC these 

DMUs received higher cores without justifications due to the BCCs ability to emphasize 

that single input variable over the others. 

Compared to basic CCR results, average efficiency scores are quite close to each other. 

Major difference is that Weight Restricted BCC allows also larger DMUs to be 

considered as efficient entities, even though the relative output/input ratio is smaller in 

comparison with smaller efficient DMUs. 

5.2.7. REA - Ranking intervals 

Also REA’s ranking intervals feature was applied to the obtained dataset. Produced 

results can be observed in the Appendix 5. When generating REA ranking intervals 

results, the same variable weight restrictions were in place as in the WR-BCC results. 

The figure in the Appendix 5 demonstrates well how illustrative charts REA ranking 

intervals feature can produce to support decision making. The shorter the bar the more 

reliable the best ranking is in relation to other DMUs. 

5.3. Discussion  

In general our derived results are in line with the theory discussed earlier in the report. 

Due to the small sample size, no comprehensive implications can be made but important 

details can be emphasized. 

In our results BCC generated higher efficiency scores than CCR, and in addition 

allowed large DMUs to produce smaller amount of output in relation to smaller DMUs. 

The decision between CCR and BCC is in our opinion political rather than technical - 

do we want to accept that large DMUs cannot achieve as high output/input ratios as 

small DMUs, and let that affect our decision making? 
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BCC in a sense compares DMUs to other DMUs which consume approximately similar 

amount of input. We applied the same principle to our sample in CCR model by 

comparing only large DMUs to each other. Even though large DMUs received higher 

efficiency scores, their relative rankings and efficiencies remained within the group of 

large DMUs quite much the same. The results did not give a strong signal that dividing 

a sample to subgroups of DMUs according to their sizes would add any value to the 

efficiency measurement. 

Our view is that there is no good reason not to exploit the option of using weight 

restrictions. Excluding clearly irrelevant weight combinations will increase the quality 

of the results. Intuitively it seems that the higher the number of variables the more 

important the weight restrictions are to prevent too large emphasis on a single variable. 

Our test of using different input variables representing partly the same input efforts 

resulted in very different efficiency scores and rankings. This indicates that variables 

are to be chosen with great consideration. 

Finally, if the CCR model (constant returns to scale) is preferred over the BCC (variable 

returns to scale), then the REA model should be considered also. The REA is based on 

the assumption of constant returns to scale and produces the same results as the CCR 

but in addition provides very illustrative ranking intervals and pair dominances. 
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6. Conclusion 

The purpose of this study was to help THL to identify the most appropriate DEA 

models for analyzing the efficiency of Finnish health care units. The aim was not only 

to compare the applicability of different DEA models but also to understand more 

deeply the characteristics of each model. In addition, the applicability of the bootstrap 

method for sensitivity analysis was studied, and the applicability of the REA model for 

producing more robust results was examined.  

During this study, all the objectives presented in the beginning of the study have been 

accomplished. First, comprehensive literature review was conducted both on the 

mathematical background of DEA models and on efficiency studies in healthcare sector 

in general. This enabled us to identify potential DEA models, gain basic knowledge 

about the field, and to start working with the data provided by THL. The literature 

review focused specifically on DEA models of CCR, BCC (returns to scale) and weight 

restrictions, and on methods of bootstrapping and REA. Second, data analyses were 

conducted based on the data provided by THL. The data analyses enabled us to observe 

the applicability of different DEA models.  

Based on the literature review and data-analyses conducted, it can be concluded that the 

answer to the research question is far from straightforward. First of all, it can be stated 

that the use of the variable returns-to-scale methods (for example BCC) can be justified 

if the aim is to compare different units of a very wide scale and it is sure that the scale 

of units affects the performance more than other external factors. However, the 

assumption of variable returns to scale is very strong and it can lead to flawed results if 

applied without a proper consideration. That is why constant returns-to-scale models 

(for example CCR and REA) are safer choices. If the scale is expected to be an 

important factor, one can divide the units to categories based on their size and use CCR 

within each category and get comparable results. However, if the CCR model is chosen 

for the efficiency analysis, it is better to switch completely to the REA model since it 

provides not only the same results as the CCR but also other information, such as 

ranking intervals, dominances, and efficiency intervals. Finally, the findings of this 

study support the use of weight restrictions if they are chosen carefully. By using 

conservative weight restrictions, irrelevant weight combinations can be eliminated.   

According to the literature review, the bootstrap-method is applicable for sensitivity 

analysis in non-parametric frontier analysis, and for constructing confidence intervals 

for the DEA efficiency scores. The method has been applied also multiple times in 

studying different health care units. These findings suggest that the bootstrap-method is 

highly potential for studying the efficiency of health care units in Finland. However, the 

bootstrapping was not utilized in the data-analysis during this study, and no empirical 
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evidence can be provided to support the preceding conclusions.  Therefore, future 

research could study the applicability of the bootstrap-method even further by utilizing 

it in data-analysis of Finnish health care units. 
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Appendix 1: Dataset provided by THL 

 

 

  

 

 
OUTPUT INPUT 

 
Number of treated patients in age group si 

Weighted 

sum of 

operations 

Total 

costs 
Dentists 

Dental 

hygienists 

Dental 

assistants 
DMU coded s1 s2 s3 s4 s5 s6 

A1 12842 42555 50984 23741 7302 6662 720093 44975290 153,0 72,2 325,3 

A2 6668 20364 23226 11095 2988 1418 383983 17502985 61,0 29,3 97,8 

A3 8940 22421 24223 10806 3564 2787 335847 19318817 74,3 33,5 125,4 

A4 6450 16580 17018 7313 2044 2013 255905 12227155 52,8 22,1 83,1 

A5 3716 13339 16712 5758 1767 1273 242502 10507410 51,5 15,0 82,0 

A6 1 1 44689 1393 48 3 232321 10776823 69,0 22,0 99,0 

A7 5107 14107 13581 6532 2075 1996 206113 9689196 46,4 19,4 104,2 

B1 3213 9305 11602 6411 1682 1475 186201 6237909 28,2 16,4 45,0 

B2 3140 9648 8411 5109 1760 1961 171424 5980705 25,4 13,5 42,4 

B3 2314 7061 10662 5230 1464 1420 147874 6176656 24,8 14,0 41,0 

B4 2283 7760 7053 4493 1018 223 124524 4016639 22,5 7,0 27,5 

B5 2862 7832 7965 3257 1292 958 121078 5459737 20,9 7,9 29,8 

B6 2634 6411 5201 3585 1488 988 114151 5224168 23,5 12,0 38,0 

B7 2034 7261 6588 5957 2095 1638 105407 4611923 19,6 9,3 34,7 

B8 1792 4946 4301 4152 1405 885 101510 4119416 17,0 7,0 21,0 

B9 1316 5258 4401 2974 821 472 101301 4030731 20,9 8,0 27,3 

B10 1659 5423 5857 4100 1149 819 100976 4067604 20,1 5,7 29,9 

C1 1614 5202 5541 3868 1301 844 91062 4404700 20,3 5,3 23,3 

C2 2286 5580 5170 3489 962 1053 90271 4003397 11,1 9,6 28,0 

C3 1260 4063 4605 3475 997 656 85070 4058438 16,5 6,0 30,5 

C4 2006 4927 3892 2918 990 725 84606 0 18,5 6,0 32,5 

C5 1478 5418 4887 3373 1056 806 80949 3109573 16,8 5,8 26,4 

C6 1711 4603 4678 2523 786 635 80322 3655996 16,0 6,6 22,3 

C7 2096 5906 5143 1975 723 375 78929 3303651 17,2 6,0 28,3 

C8 1973 4522 3470 1790 557 438 74428 2468876 12,3 8,6 19,2 

C9 1757 4533 4421 2569 575 355 71949 3415670 20,0 7,0 31,0 

C10 973 3551 4274 2443 721 340 66338 2645655 14,2 7,0 17,0 

C11 1853 4711 3885 2516 745 458 65953 2747867 13,8 5,8 15,1 

C12 1258 3962 3273 2309 711 554 63453 2668673 0,0 0,0 0,0 

C13 1418 4429 3223 2431 618 597 60085 2598221 15,0 4,0 21,0 

C14 878 2328 1987 1565 506 403 49912 1957640 9,7 5,8 12,5 

C15 1129 2963 2810 1517 593 429 48061 1897774 10,5 5,0 13,0 

C16 1019 2979 2788 1898 501 358 39455 1393346 8,0 2,0 18,0 

C17 823 2070 1761 1582 524 453 33247 1448845 5,4 4,2 9,5 



Appendix 2: Example results, CCR-I 
Input variables: 1) number of dentists, 2) number of dental hygienists, 3) number of dental 

assistants 

Output variables: 1) weighted sum of completed operations (operations weighted by cost factor) 

Weight restrictions: none 

  

 

 

DMU Score 

B2 1 

B4 1 

B8 1 

C2 1 

C16 1 

B1 0,9984 

B5 0,9814 

A2 0,9734 

B10 0,9729 

C1 0,9647 

C8 0,9221 

C11 0,9018 

C17 0,8951 

B3 0,8873 

C3 0,8853 

A5 0,8809 

C14 0,8481 

C5 0,8420 

B7 0,8358 

C6 0,8282 

B9 0,8228 

C13 0,8211 

C4 0,8156 

C10 0,8073 

C7 0,8001 

A4 0,7911 

C15 0,7659 

A1 0,7330 

B6 0,7329 

A7 0,7256 

A3 0,7170 

C9 0,6258 

A6 0,6037 
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B8
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C14

C5

B7

C6

B9

C13

C4

C10

C7

A4

C15

A1

B6

A7

A3

C9

A6

Scores CCR-I



Appendix 3: Example results, BCC-I 
Input variables: 1) number of dentists, 2) number of dental hygienists, 3) number of dental 

assistants 

Output variables: 1) weighted sum of completed operations (operations weighted by cost factor) 

Weight restrictions: none 

  

 

 

DMU Score 

A1 1 

A2 1 

A5 1 

B1 1 

B2 1 

B4 1 

B8 1 

C2 1 

C16 1 

C17 1 

C1 0,9965 

C11 0,9927 

B10 0,9905 

C14 0,9858 

B5 0,9849 

C15 0,9468 

C8 0,9439 

C13 0,9074 

C3 0,8978 

B3 0,8884 

C10 0,8874 

C6 0,8571 

C5 0,8570 

B7 0,8464 

B9 0,8300 

C4 0,8261 

A4 0,8179 

C7 0,8145 

B6 0,7451 

A3 0,7435 

A7 0,7366 

A6 0,6902 

C9 0,6426 
 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

A1

A2

A5
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B4
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C16

C17
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C11
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C8

C13

C3

B3

C10

C6

C5

B7

B9

C4

A4

C7

B6

A3

A7

A6

C9

Scores - BCC-I



Appendix 4: Example results, BCC-I with weight restrictions 
Input variables: 1) number of dentists, 2) number of dental hygienists, 3) number of dental 

assistants 

Output variables: 1) weighted sum of completed operations (operations weighted by cost factor) 

Weight restrictions: 

1) 1 ≤ (dentists/assistants) ≤ 5; 2) 1 ≤ (dentists/hygienists) ≤ 5; 3) 0,5 ≤ (hygienists/assistants) ≤ 5 

  

  

 

DMU Score 

A1 1 

A2 1 

B1 1 

B2 1 

B8 1 

C2 1 

C17 1 

B4 0,9946 

B5 0,9657 

C16 0,9582 

C8 0,9287 

C14 0,9168 

C11 0,9090 

B3 0,8851 

B10 0,8830 

C15 0,8682 

C6 0,8523 

C1 0,8506 

C3 0,8455 

C10 0,8323 

C5 0,8312 

A5 0,8233 

B9 0,8193 

B7 0,8190 

A4 0,7890 

C7 0,7865 

C13 0,7791 

C4 0,7764 

B6 0,7401 

A3 0,7203 

A7 0,6646 

C9 0,6318 

A6 0,5892 
 

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

A1

A2

B1

B2

B8
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C17

B4

B5

C16
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C14

C11

B3

B10

C15

C6

C1

C3

C10

C5

A5

B9

B7

A4

C7

C13

C4

B6

A3

A7

C9

A6

Scores - WR-BCC-I



Appendix 5: Example results, REA Ranking Intervals with weight restrictions 
Input variables: 1) number of dentists, 2) number of dental hygienists, 3) number of dental 

assistants 

Output variables: 1) weighted sum of completed operations (operations weighted by cost factor) 

Weight restrictions: 

1) 1 ≤ (dentists/assistants) ≤ 5; 2) 1) 1 ≤ (dentists/hygienists) ≤ 5; 3) 1) 0,5 ≤ (hygienists/assistants) 

≤ 5 

  

 

DMU 

 

Ranking 

MIN MAX 

B2 1 3 

B8 1 4 

C2 1 10 

B4 2 7 

B1 3 6 

B5 4 7 

A2 4 8 

C11 7 17 

B3 8 11 

C8 8 12 

B10 8 13 

C1 8 18 

C17 10 20 

C6 11 16 

C14 11 22 

B7 12 19 

C3 12 23 

B9 13 16 

A5 16 23 

A4 17 23 

C10 17 25 

C5 18 20 

C15 18 26 

C16 19 29 

C7 23 26 

B6 24 27 

C4 24 27 

C13 26 30 

A3 28 29 

A1 29 30 

C9 31 32 

A7 31 33 

A6 32 33 
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Appendix 6: Example results, comparison of two sets of CCR-I results 
Weighted sum of operations vs. total costs: 

      Input variables: Total costs; Output variables: Weighted sum of completed operations 

Weighted sum of operations vs. personnel: 

      Input variables: Number of dentists, Number of dental hygienists, Number of dental assistants; 

      Output variables: Weighted sum of completed operations 

 

  

 

Weighted sum of operations vs. total 

costs 

Weighted sum of operations vs. 

personnel 
Change in 

score 

Change in 

ranking 

DMU Score Ranking Score Ranking 

A1 0,5164 33 0,7330 28 -0,2166 +5 

A2 0,7076 24 0,9734 8 -0,2657 +16 

A3 0,5608 32 0,7170 31 -0,1562 +1 

A4 0,6751 30 0,7911 26 -0,1160 +4 

A5 0,7444 18 0,8809 16 -0,1365 +2 

A6 0,6954 26 0,6037 33 +0,0916 -7 

A7 0,6862 27 0,7256 30 -0,0395 -3 

B1 0,9628 3 0,9984 6 -0,0356 -3 

B2 0,9246 4 1 1 -0,0754 +3 

B3 0,7722 14 0,8873 14 -0,1150 0 

B4 1 1 1 1 0 0 

B5 0,7153 22 0,9814 7 -0,2661 +15 

B6 0,7048 25 0,7329 29 -0,0281 -4 

B7 0,7372 20 0,8358 19 -0,0985 +1 

B8 0,7948 12 1 1 -0,2052 +11 

B9 0,8107 9 0,8228 21 -0,0121 -12 

B10 0,8007 11 0,9729 9 -0,1721 +2 

C1 0,6669 31 0,9647 10 -0,2978 +21 

C2 0,7273 21 1 1 -0,2727 +20 

C3 0,6761 29 0,8853 15 -0,2092 +14 

C4 #N/A #N/A 0,8156 23 #N/A #N/A 

C5 0,8397 6 0,8420 18 -0,0023 -12 

C6 0,7087 23 0,8282 20 -0,1196 +3 

C7 0,7706 15 0,8001 25 -0,0294 -10 

C8 0,9724 2 0,9221 11 +0,0503 -9 

C9 0,6795 28 0,6258 32 +0,0537 -4 

C10 0,8088 10 0,8073 24 +0,0015 -14 

C11 0,7742 13 0,9018 12 -0,1276 +1 

C12 0,7669 16 #N/A #N/A #N/A #N/A 

C13 0,7459 17 0,8211 22 -0,0752 -5 

C14 0,8224 7 0,8481 17 -0,0258 -10 

C15 0,8169 8 0,7659 27 +0,0510 -19 

C16 0,9134 5 1 1 -0,0866 +4 

C17 0,7402 19 0,8951 13 -0,1549 +6 

 


