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1. Introduction

A growing literature on data envelop analysis (DEA) has emerged since the seminal
paper of Charnes et al. (1978), offering numerous methods for examining the efficiency
of decision-making units (DMUs). More importantly, according to Hollingsworth et al.
(1999), there has been increasing interest in measuring the productive performance of
health care services since the mid-1980s. Salo & Punkka (2011) argue that DEA models
in health care give insights into which DMUs are more efficient than others when health
indicators are viewed as outputs and when inputs consist of health-care investments and
possibly contextual factors as well. For example, Garcia et al. (1999) analyze the
efficiency of primary health units and explore how sensitive the DEA results are to the
selection of output variables. In addition, Linna et al. (2010) have compared the
performance of hospital care in four Nordic countries.

However, there are some problems related to DEA approach. Non-parametric methods,
such as DEA, give the highest available efficiency score one for many units already
with relatively small amounts of output/input —variables, leading to results with low
value of information. In addition, in case of low number of observations, the efficiency
frontier might be based on outliers causing results to be sensitive. This is the case
specifically in small countries, such as Finland, where the number of comparable health
care organizations is typically small. These impose significant challenges when
comparing sufficient approaches and methods to study the efficiency of health care
units, and imply that especially parametric statistical methods might be problematic.

The aim of this study is to analyze and test methods for comparing efficiency of
different health care units in Finland. The analysis is done specifically considering the
problems discussed earlier. The main research question of this study can be stated as
follows: What is the most appropriate method for comparing the efficiency of health
care units in Finland? The performance of analyzed methods is tested using the real data
of Finnish dental health care units. The data is provided by THL and it is used to
demonstrate what kinds of results different methods produce.

This research report is organized as follows. Section 2 presents the basic DEA model
and its most used variations and their advantages and disadvantages. Also the recent
ratio-based efficiency analysis model (REA) (Salo and Punkka, 2011) is introduced.
Section 3 focuses on sensitivity analysis, mainly on bootstrapping method. Section 4
discusses how DEA is applied to health care sector, both nationally and globally, and
what are the characteristics of this sector that the models need to consider. Section 5
presents the example results of different models and analyzes their applicability. Section
6 concludes.
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2. DEA models

2.1. CCR model

The Charnes-Cooper-Rhodes model (CCR) is one of the most basic DEA models and
was initially proposed by Charnes et al. in 1978. The basic idea of the CCR model is
that it calculates the efficiency ratio for the DMUs based on their inputs and outputs and
by comparing that ratio with other DMUs the model defines the efficiency of the DMU.

Assume that a DMU consumes M types of inputs and produces N types of outputs. The
kth DMU consumes Xm>0 units of the mth input and produces yn>0 units of the nth
output. The preference information about the relative values of inputs and outputs is
represented by nonnegative weights v; and u;j, respectively. The virtual input of the
DMU is Y mVmXmk and the virtual output Y U,Ynk. We assume these measures to be
strictly positive for all feasible weights.

Based on virtual inputs and virtual outputs we define the efficiency ratio for each DMU.
The efficiency ratio is

virtual output X, u,Vnk

Bx(u,v) = virtual input ¥ VinXmk

Using linear programming we determine the optimal weights, which maximize the
efficiency ratio for each DMU. The optimal weights usually vary from one DMU to
another. If the DMU’s efficiency ratio is the best of all DMUs with some weights, the
particular DMU is efficient and will have an efficiency score of one (100%). The
efficient DMUs define an efficient frontier which serves as a point of reference in the
evaluation of efficiency.

If the DMU’s efficiency ratio is not the best of all with any weights, the DMU is
inefficient. The score of an inefficient DMU is usually less than one and it represents
how close to the efficient frontier the DMU can optimally be. For example, if the score
of a DMU is 0.8, it means that the particular DMU can produce only 80 % of the
outputs that an efficient DMU can produce with the same inputs. To become efficient,
the DMU needs to produce 25 % more outputs with the same inputs (1/0.8 = 1.25).
The scores are always calculated with the most favorable weights for each DMU.
(Cooper et al., 2007)
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Figure 1: The CCR model

Figure 1 (Cooper et al., 2007) presents a simple example. The efficiencies of stores (A-
H) are determined based on the sales and the number of employees. The store B is the
only efficient DMU and determines the line of efficient frontier. The efficiency scores
of other stores are calculated based on the relative distances from the frontier. For
example, the efficiency score of A is 0.5 and the same of D is 0.75. The interpretation of
the scores is that the sales of the store D are only 75 % of the sales of an efficient store.
To become efficient, the store D needs to either increase sales by 33 % (1/0.75 = 1.33)
or decrease the number of employees by 25 %.

We present here two different ways to calculate the efficiency scores. The first version
aims to minimize inputs while satisfying at least the given output levels and the other
version attempts to maximize outputs without requiring more of any input values. The
versions are called input-oriented model and output-oriented model, respectively.

2.2. BCCmodel

The CCR model is built on the assumption of constant returns to scale, meaning that if
all inputs are doubled, the output is also expected to double. The Banker-Charnes-
Cooper (BCC) model, originally proposed by Banker et al. in 1984, is an extension of
the CCR model. In their paper, Banker et al (1984) provide models for estimating both
technical and scale efficiencies of DMUs. The BCC model takes into account that the
productivity at the most productive scale size may not be attainable for other scale sizes
at which a given DMU is operating. Therefore, the BCC model estimates the pure
technical efficiency of a DMU at a given scale of operation.

The only difference between the CCR and BCC models is the convexity condition of
the BCC model, which means that the frontiers of the BCC model have piecewise linear
and concave characteristics, which lead to variable returns to scale. That is, the BCC
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model assumes increasing, decreasing and constant returns to scale at some point of
the frontier (Figure 2). (Cooper et al., 2006, pp. 87-88)

Output

Production Possibility Set

Input

Figure 2: Production frontiers of the BCC model

Figure 3 (Cooper et al., 2007) illustrates the difference between the CCR model and the
BCC model more precisely. The solid line, passing through A, B and C, represents the
BCC model, whereas the dash line, passing through only B, represents the effective
frontier of the CCR model. In general, the CCR efficiency cannot exceed the BCC
efficiency. For example, let’s calculate the BCC and CCR efficiencies of DMU D in
Figure 3. The BCC efficiency is approximately 2.67/4 =~ 0.67, whereas the CCR-
efficiency of DMU D is smaller: 2.25/4 ~ 0.56.
QOutput p
1 g’/ A
5 4

4

1 Input

Figure 3: The BCC (solid line) model vs. the CCR (dash line) model

2.3. Weightrestrictions

When using previous models (CCR, BCC), it is possible that there are many zeros in the
optimal weights (vi*,u;*) of an inefficient DMU. A zero means that the particular input
or output is effectively ignored in the efficiency evaluation and it is usually a sign that
the DMU has a weakness in the corresponding input/output compared with other
DMUs. The assumption of nonnegative weights is reasonable when we do not have any
information about the relative values of inputs and outputs.
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There are situations, however, where additional information is available and where one
is willing to restrict the multiplier vectors v and u more than just by nonnegativity
requirement. For these situations Cooper et al. (2007) present two methods: the
assurance region method and the cone-ratio method. In the both methods the main idea
IS to restrict the feasible region of the weights.

The assurance region approach imposes constraints on the relative magnitude of the
weights for special items. For example, we can add a constraint on the ratio of weights
for input 1 and input 2 as follows:

VU,
Liy, = — < Uy,
U

where L, and U, , are lower and upper bounds of the ratio vo/v;.

In the cone-ratio method we restrict the feasible region of weights to be in the convex
cone generated by admissible nonnegative direction vectors. This method can be
regarded as a generalization of the assurance region approach. It can deal with all the
elements of input/output at the same time when in the assurance region method we have
to define an equation for every pair of input/output elements.

Generally, by adding these constraints the efficiency score of a DMU is reduced and a
DMU previously characterized as efficient may be found to be inefficient. Therefore,
one has to be careful in choosing these bounds.

2.4. REA

When using the traditional DEA models, the efficiency scores of DMUSs’ represent the
best possible efficiencies using the weights that are most favorable to each DMU.
Traditional results do not include information how the efficiency score changes when
using different input/output weights even though other weights may reflect relevant
situations.

Salo and Punkka (2011) present a new model for analyzing efficiencies: the ratio-based
efficiency analysis (REA). In REA model the efficiency scores of DMUSs’ are evaluated
with every feasible weight combination. One can then examine for example how the
efficiency scores change or what the ranking intervals of the DMUs are. With this
information the decision maker sees if the efficiency of a DMU is robust.

Also the efficiency dominance can be examined. DMUyx dominates DMU; if the
efficiency ratio of DMUy is at least as high as that of DMU, for all feasible weights, and
moreover, there exist some weights for which its efficiency is strictly higher. With this
kind of examination the efficiency comparison can easily be made.
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Another advantage of the REA model is that it is not as sensitive to outliers as the basic
DEA models. In the basic models the introduction or removal of a single outlier may
shift the efficient frontier drastically and thus disrupt efficiency scores. Using the REA
ranking intervals, the similar manipulation of the sample changes the rankings at most
only by one unit. The REA model is also suitable for situations where the number of
DMUs is small, because the results are not computed relative to an efficient frontier.
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3. Sensitivity analysis

3.1. Bootstrapping

3.1.1. Method

The measures of efficiency are relative ones and provide means for ranking different
decision making units (DMUs), i.e. health care units in the current study. Therefore, it is
also important to analyze the sensitivity of the estimated efficiencies to the sampling
process. One method to address this issue is a bootstrap-method. The introduction of the
bootstrap-method dates back to Efron (1979), when he showed that the method works
satisfactorily on a variety of estimation problems, such as the estimation of the variance
of the sample median and confidence intervals. As noted by Xue and Harker (1999);
although the bootstrap is a computationally intense method, the modern computer is,
however, more than sufficient for the computation required.

The problem solved by the bootstrap is mainly an estimation problem, and the principle
of the method is simple and straightforward. Consider a random sample X =
(X1, X5, ..., X,) from a population with an unknown distribution F. The goal is to
estimate the sampling distribution of some pre-specified random variable R(X,F), based
on the real data set x, where x = (x4, x5, ..., Xx,,) denotes the observed realization of
X = (X1, X5, ..., X). (Efron, 1979, Xue and Harker, 1999) To clarify this, bootstrap-
method is a computer-based method for assigning measures of accuracy to sample
estimates by constructing a number of resamples of the observed dataset with equal
size, each of which is obtained by random sampling with replacement from the original
dataset.

To illustrate this, consider the following coin-flipping example. We flip the coin and
record whether it lands heads or tails. Let X = x4, x5, ..., x;0 be 10 observations from
the experiment, where x; = 1 if the coin lands heads, and O otherwise. Instead of using
normal theory, such as t-statistic, we can use the bootstrap method and resampling to
derive the distribution of sample mean x. First, a bootstrap resample can be derived by
resampling the data randomly with replacements. A first resample could look like for
example like this: X7 = (xq, X, X5, X2, X1, X190, X4, X3, X7, X10)- It IS important to notice
that the resample can include duplicates, and the number of data points in the bootstrap
resample have to be equal to the number of data points in the original observation data.
The first bootstrap mean p; can be now easily calculated. By repeating this procedure
for several times, an empirical bootstrap distribution of sample mean can be derived.
This distribution can then be used for further analysis.
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3.1.2. Applications

Since the introduction, the bootstrap has quickly become a popular and powerful
statistical tool used to address some problems in statistical analysis. Simar (1992) was
the first to use the bootstrap method in the non-parametric frontier analysis. He notes
that in almost all cases, the sampling distributions are not available due to the non-
linearity of the estimation procedures or the lack of parametric distributional
assumptions on the residuals, and implies that in this case bootstrapping can help to get
an insight on those issues. He concludes that the bootstrap is an appealing tool in the
context of frontier estimation and efficiency analysis. The method provides not only a
means to analyze the sensitivity of the ranking of the different units in terms of their
inefficiency, with a measure of the statistical significance of the difference between the
efficiencies, but it also provides proxy for the sampling distribution of estimators when
analytical results are not yet obtained.

On the other hand, Atkinson and Wilson (1995) have used the bootstrap to construct the
confidence intervals for the means of the DEA efficiency scores. Furthermore, they note
that the bootstrap is one of several resampling methods which employ Monte Carlo
techniques to approximate the small-sample distributions of estimators. In addition, they
agree with Simar (1992) that the method is often of particular use in cases where
analytic results are not available. Similarly, Ferrier and Hirschberg (1997) have derived
the confidence intervals and a measure of bias for the DEA efficiency scores.

Simar and Wilson (1998) have utilized bootstrapping in analyzing the sensitivity of the
DEA efficiency scores related to the variations of the estimated frontier. They clarify
our discussion by stating that the bootstrapping is based on the idea of repeatedly
simulating the data-generating process (DGP) usually through resampling, and applying
the original estimator to each simulated sample. This way the resulting estimates mimic
the sampling distribution of the original estimator. However, the key and also the
greatest challenge, is to clearly define the DGP, i.e. the function that is supposed to
characterize the entire population from which the data set has been drawn. Finally, Xue
and Harker (1999) use the bootstrap-method to obtain a theoretically appropriate
solution to the problem posed in the regression analysis of the DEA efficiency scores
due to the inherent dependency among the DMUSs’ efficiency scores.

Grosskopf (1996) has reviewed literature regarding the bootstrapping, and finds the idea
of using the bootstrapping to construct confidence intervals extremely appealing. She
also considers that Simar and Wilson (1998) have suggested a very reasonable way of
thinking about the DGP, and provided innovative solutions to the boundary and bias
problems involved with applying bootstrapping to non-parametric technical efficiency.
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Efron and Tibshirani (1986) have addressed the issue of how many bootstrap-
replications one must take. They conclude that for the bootstrap-estimate of standard
error already 25 Monte Carlo replications give reasonable results, whereas there is little
improvement past 100 replications. On the other hand, they point out that confidence
intervals are a fundamentally more ambitious measure of statistical accuracy than
standard errors. Based on calculations of Efron (1987), Efron and Tibshirani (1986)
suggest a rough minimum of 1000 for the number of Monte Carlo bootstraps necessary
to achieve the bootstrap confidence intervals. Smaller values such as 250 replications
can be somewhat useful for calculating percentile intervals.

More recent studies have also applied the bootstrapping in studying different health care
units. For example, Staat (2006) presents results of a research using a DEA-bootstrap
approach to study the efficiency of hospitals in Germany. He states that efficiency
estimates based on DEA-type methods are biased upwards, and the bias depends on
sample size N as well as on the curvature of the frontier and the magnitude of the
density at the frontier. Furthermore, he proposes that in order to obtain bias corrected
estimates for the multiple-input-multiple-output case, the bootstrap method must be
applied. In addition, Medin et al. (2010) estimate cost efficiency scores for the
performance of university hospitals in the Nordic countries by using the bootstrap bias-
corrected procedure.

Based on the literature review, the bootstrap is considered to be specifically useful in
cases where the sampling distributions and analytic results are not available, or when
the sample size is small. The method is also considered to be simple and straightforward
to derive estimates of standard errors and confidence intervals for complex estimators of
complex parameters of the distribution, and providing means to control and check the
stability of the results. The recommendations of the situations when to use the bootstrap
procedure suggested by Adér et al. (2008) are consistent with the findings discussed
above, and are summarized in the Table 1.
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Table 1: Situations where bootstrapping procedures are useful

When the theoretical distribution of a statistic of interest is complicated
or unknown.

Since the bootstrapping procedure is distribution-independent, it
provides an indirect method to assess the properties of the distribution
underlying the sample and the parameters of interest that are derived
from this distribution.

When the sample size is insufficient for straightforward statistical
inference.

If the underlying distribution is well-known, bootstrapping provides a
way to account for the distortions caused by the specific sample that
may not be fully representative of the population.

When power calculations have to be performed, and a small pilot sample
is available.

Most power and sample size calculations are heavily dependent on the
standard deviation of the statistic of interest. If the estimate used is
incorrect, the required sample size will also be wrong. One method to
get an impression of the variation of the statistic is to use a small pilot
sample and perform bootstrapping on it to get impression of the
variance.

On the other hand, the bootstrap-method does have also limitations. Campbell and
Torgerson (1999) explain that many of the criticism presented in the literature are
related to the simplicity of the assumptions of the model (Briggs et al., 1997, Campbell
and Torgerson, 1997, Mooney and Duval, 1993). Therefore, the method may conceal
the fact that many important assumptions are being made, such as independence of
samples, when undertaking the bootstrap analysis.

Based on the literature review, it can be concluded that the bootstrap-method is
applicable for sensitivity analysis in non-parametric frontier analysis, and for
constructing confidence intervals for the DEA efficiency scores. The method has been
applied also multiple times in studying different health care units. These findings
suggest that the bootstrap-method is highly potential for studying the efficiency of
health care units in Finland.
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3.2. Other methods for sensitivity analysis

Bootstrapping is not the only method for sensitivity analysis. As Atkinson and Wilson
(1995) imply, also other resampling methods exist that employ Monte Carlo techniques,
such as jackknifing, cross-validation, and permutation tests. Completely other approach
to sensitivity analysis is to consider the degrees of freedom in the envelopment model.
As Cooper et al. (2006) notes, the number of degrees of freedom will increase with the
number of DMUs and decrease with the number of inputs and outputs. On the other
hand, algorithmic approaches relate to the use of algorithms that avoid the need for
additional matrix inversions when generating solutions in the usual simplex algorithm
computer codes (Cooper et al., 2006, Charnes et al., 1984, Charnes and Cooper, 1968).
The basic idea of metric approaches is to use concepts such as distance or length in
order to determine “radii of stability” within which the occurrence of data variations
will not alter a DMU’s classification from efficient to inefficient status (Cooper et al.,
2006). Finally, multiplier model approaches are used in cases where the DMUs are
numerous and it is not clear which ones require attention, unlike the other approaches
above that treat one DMU at a time (Cooper et al., 2006, Thompson et al., 1994,
Thompson et al., 1996). However, due to the scope of this study, these methods are not
discussed here any further.
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4. Applying DEA to health care

4.1. Literature review - previous applications

During the 1990’s Data Envelopment Analysis rapidly became an acceptable method of
efficiency analysis. Seiford (1994) lists 472 published articles and Ph.D. dissertations in
his DEA bibliography already 1992. Less than a decade later Tavares (2003) includes
almost 3200 items in his bibliography. Ray (2004) points out, however, that as instant as
the success of DEA in management science was, in economics the welcome has been
much less enthusiastic due to its shortcomings.

DEA models have been used in healthcare analysis since the early 1980’s.
Hollingsworth et al. (1999) reviewed non-parametric studies of health care efficiency
made up to the end of 1997. Number of studies showed sharp increase towards the end
of the period, half of them being published between years 1994 and 1997. Over 60% of
the total 91 studies used DEA as the only method of analysis. Roughly a quarter used
regression analysis in addition, mainly to regress factors on the efficiency scores in an
attempt to identify the determinants of efficiency. Only one tenth of the studies
combined DEA with newer developments such as Malmquist index or the use of
efficiency scores as the dependent variable in secondary regression analysis. Studies of
the early times are characterised of being limited with only basic DEA, since the
methodology was still new and developing.

Later Hollingsworth (2003) updated the review with latest publications including
studies up to 2002. Now the total number of studies was 188 and the trend was still
growing. Figure 4 illustrates the growing popularity of DEA in healthcare efficiency
analysis.

25

15

10

No of Studies

%, ey B %, B, T, %, P, R Ty 0, Y T Y,

Year

Figure 4: Number of DEA studies in health care efficiency analysis
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With the latest research included the percentage of studies using DEA alone had
dropped to 50. Proportion of the studies using DEA with regression remained in one
quarter. Malmquist index and SFA, however, had gained significantly more popularity
and represented now already one quarter of all studies. Hollingsworth notes that only a
small part of the studies use weight restriction models or analysis of returns to scale.
Similarly, only small part uses statistical or sensitivity analysis. These additions he sees
as a major opportunity for improvement for future studies. Non-parametric techniques,
such as stochastic frontier analysis, also gained popularity over the period of the two
studies.

Overall finding of Hollingsworth was that in single sector studies DEA figures of public
sector are higher than in private sector, indicating less variance in public sector. When
compared across the whole healthcare sector, public hospitals still get higher scores,
indicating in addition higher efficiency. Because of the large variance in research
methods and on-going development of the techniques, Hollingsworth calls, however, for
caution in comparisons.

As an example of a single study, Tsai and Molinero (2002) studied DMUs consisting of
several activities and found that it is possible for a DMU to appear to be operating
efficiently with constant returns to scale, but this may hide scale inefficiencies when the
individual activities are studied separately. They further developed returns to scale
analysis by incorporating a possibility of variable returns to scale for each one of the
component activities a DMU is involved in. Two formulations were developed: The
first considers the best overall allocation of resources between all the DMUs involved in
the analysis and the second considers inefficient DMUs aiming to produce the best
internal allocation of resources between the component activities in order to minimise
overall inefficiency. Authors note that their model relies on priority judgments and thus
includes an element of subjectivity. Returns to scale analysis appear, however, to be
robust to the choice of weights in the model.

4.2. Returns to scale

The use of variable returns-to-scale assumption has to be very well argued. According
to the point of view, which supports the use of assumption, there are situations where
the scale of a unit has a specific influence on the unit’s productivity (Cooper et al.,
2007). Based on this point of view, the medium-sized units usually have the possibility
to be more efficient than the very small or very large units. This means that the marginal
productivity of the medium-sized units is relatively high; with one additional unit of
input, they can produce more output than the other units. Especially the large units can
be significantly less efficient than the smaller units. This idea is implemented from
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economics and it is reasonable to consider taking it into account when analyzing
various-sized units. For example, with BCC model, one can compare the units from
different scales at the same time and get useful results.

However, one has to be sure that the main reason for the poor performance of large
units is the scale and that one cannot do anything to change that situation. The particular
assumption accepts the weakness of large units as a fact and does not encourage finding
a solution for that. There surely are some ways to develop the operations of large units
to be better comparable with medium-sized units.

Also, there might be other reasons for the poor performance of large units than the
scale. Those reasons and problems easily remain hidden if one does not consider the
situation closely. For example, in health care the largest units are often responsible to
receive the most difficult cases. Those cases require more resources and thus the
efficiency, calculated by the quantity of operations, decreases. Now, if the patient
structure is not linearly dependent on the size of the unit, the BCC model gives flawed
results.

In economics, there is also another idea about the scale and marginal productivity,
called the economies of scale. It simply means that the larger the company, the smaller
the marginal costs. This leads directly to the greater efficiency. This phenomenon is
usually seen in commodity production and thus it cannot be straightforwardly applied to
health care, which is mostly a service business.

The point of presenting the idea of economies of scale is to show that it is not clear that
large units automatically are less efficient than smaller units. Additionally, the
assumption of variable returns to scale is so powerful that, if applied without a proper
research, it might result more damage than advantage. Therefore, in many cases, it is
safer to use the constant returns-to-scale assumption. If the scale differences are large,
the units can be categorized by their size and compared to the units of same category
with constant returns-to-scale assumption.

4.3. Weightrestrictions

The use of weight restrictions seems very reasonable. Without restricting the weights,
the relative values of outputs and inputs can be unrealistic. Often the optimal weights
include zero, which means that the particular input or output type is not considered in
the calculation of efficiency score at all. In health care sector, an example is that in the
calculation of efficiency, only the number of nurses is considered, and the number of
doctors is irrelevant. With weight restrictions, one can set upper and lower limits for the
relative values of inputs and outputs.
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Setting the restrictions has to be done carefully, because the limits are likely to be seen
in the optimal weights. The restrictions should be based on statistical analysis or expert
opinion. In both cases it is recommended to start with conservative weights and proceed
step by step to more radical weights, following all the time how the efficiency scores
change.

4.4. Geographical differences

O’Neill et al (2008) reviewed 79 DEA studies from 1984-2004 and found that there are
fundamental differences in the methods used in DEA healthcare research between
Europe and North-America. European studies use on average significantly more
sophisticated methodology than their American counterparts. In defining efficiency 52%
of the European studies used the more encompassing allocative method (requiring the
relative price information of inputs and outputs) whereas only 12% of the American
studies did the same. Thus, a vast majority of American studies settled with the simple
technical efficiency analysis. European studies were also more comprehensive within
the time frame, with 60 % conducting a multi-year study compared to the corresponding
figure of 25 % in American studies. American researches used in addition far less DEA
together with other methods such as stochastic frontier analysis (SFA) or the Malmquist
index. European studies used less input variables (on average 3.8) but in turn more
outputs (5.4) compared to American researches (4,8 and 4.7 respectively). The study
sizes showed a massive difference between the two continents: European studies
covered on average 74 DMUs whereas Americans had on average 440.

DEA and SFA methods have been found to produce similar efficiency estimates when
applied to European hospitals (Jacobs, 2001) but divergent results in the US (Chirikos
and Sear, 2000). According to O’Neill et al (2008) this indicates that allocative
inefficiency is more of a problem in the US than in Europe. Such inefficiencies arise
when hospitals compete by purchasing expensive equipment to attract physicians and
patients. While this strategy might be efficient locally, it is not optimal nationwide
because it leads to excess hospital capacity and partially empty surgical facilities for
some trendy procedures such as transplants. All in all, healthcare is much more
centralised and regulated in Europe, and Health Authorities influence resource
allocation, reimbursements and hospital priorities.

In 1983 America changed the hospital reimbursement model from inpatient-based to
diagnosis-related group (DRG)-based system. In DRG inpatient cases are classified into
clinical groups based on expected resource use. When reimbursements were no longer
based on total costs but individual cases, it changed radically the motivation of hospitals
to get rid of the patients. Hence, DRG-adjusted discharges became a natural choice for
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output, while use of inpatient days dropped steadily to reach zero percent soon after the
new millennium. The similar course of action started in Europe a decade later, but
between 2001 and 2004 still a half of the European studies used inpatient days as one of
the outputs.

4.5. Quality vs. quantity

Most of the DEA studies in healthcare have used quantitative outputs in the models, and
there have been only few studies trying to implement quality measures in the outputs.
Of course, one reason could be the lack of validated measures how to evaluate quality.
For example, if mortality rates are used as quality outcomes, hospitals treating the
sickest or most severely injured patients will become inefficient compared to their
peers. (Nayar and Ozcan, 2008)

Newhouse (1970) argues that quantity and quality are two commodities to which the
resources may be allocated. Since the resources are limited, there is a quantity-quality
trade-off. It is usually thought that increasing quality may require more labor and
capital, whereas efficiency improvements may lead to poorer performance in terms of
quality. Laine et al. (2005) have studied the association between quality of care and
technical efficiency in long-term care, and they state that defining and measuring is a
multidimensional and complex problem.

DEA can be used to measure both dimensions of healthcare performance: technical
efficiency and quality. Nayar and Ozcan (2008) studied whether the growing concern
that hospitals are improving their efficiency at the expense of quality is valid. Nayar and
Ozcan analyzed first the efficiency of acute care hospitals using measures of quality in
DEA. Then the results were compared to a DEA model that uses measures of technical
efficiency as inputs and outputs.

Nayar and Ozcan found that hospitals producing quantitative outputs efficiently were
also producing quality outputs efficiently. Two thirds of the 53 hospitals analyzed were
performing poorly in terms of both efficiency and quality. In addition, none of the
hospitals was technically efficient but inefficient with respect to quality. Thus, Nayar
and Ozcan’s study does not support the efficiency-quality trade-off. In fact, it might be
quite the opposite as some of the technically inefficient hospitals were performing well
when it comes to quality.

4.6. Choosing variables

Choosing the input and output variables is an important phase of efficiency analysis. In
this project, we do not focus closely on this phase, because it would require much more
substance and understanding of the health care sector than we currently have. However,
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we present here the rule of thumb (Cooper et al., 2007) considering the number of
variables:

n = max{m X s,3(m + s)},

where n is the number of units, m the number of input variables and s the number of
output variables. If this equation does not hold in the efficiency analysis, quite a few
units might be seen as efficient. However, the number of efficient units can be
decreased by using weight restrictions for example.

Cooper et al. (2007) also recommend starting the analysis with a small number of
variables and increasing the number one by one, following constantly how the results
change. It is better to have few important variables than too many less important even
though the model might not be as accurate.
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5. Results of data analysis

5.1. Dataset

In order to illustrate the differences between different DEA model modifications and
assess the applicability of different DEA models to efficiency measurement in
healthcare, we were provided with a dataset by THL. The dataset covered the year 2010,
included 34 individual DMUs, and contained several input and output variables from
the area of dental care in Finland. DMUs were basically different geographical
healthcare areas, such as cities, that are autonomous in their resource allocation
decisions. The dataset is presented and can be observed in the Appendix 1.

For this report, the DMU names were coded according to their relative sizes. The letter
in a DMU name represents the size category (the largest DMUs in category A and the
smallest in category C). The trailing number distinguishes the DMUs within a
category.!

5.1.1. Variables
The dataset consisted of 4 input variables and 7 output variables. The variables are
presented in Table 2.

Table 2: Variables of the provided dataset

Number of dentists Average number of dentists during 2010
Number of dental hygienists Average number of dental hygienists during 2010
Number of dental assistants Average number of dental assistants during 2010

Number of treated patients in age group s1*
Number of treated patients in age group s2*

Number of treated patients in age group s3*
Number of treated patients in age group s4*

Number of treated patients in age group s5*
Number of treated patients in age group s6*

Weighted sum of operations completed Sum of operations completed in 2010. Operations
were weighted by cost factor to take into account
varying expenses between operation types.

*) Age order: s1 <s2 <s3 < s4 < s5 < s6 (the oldest)

! Classification was based on the output variable weighted sum of operations completed (introduced later
in the text). DMUs having aforementioned variable’s value over 200 000 were classified in category A,
DMUs having the value between 100 000 and 199 999 were classified in category B, and rest of the
DMUs were classified in category C.
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Input variables

The obtained input variable set can be divided into two mutually exclusive subsets.
Another subset includes three variables (number of dentists, number of dental
hygienists, and number of dental assistants) that represent the input effort of three
different personnel groups counted in average man-years according to each personnel
group. The other input variable subset consists of only the total costs variable including
the salaries of the three aforementioned personnel groups but also other dental care
related costs.

Output variables

Similarly to our input variables, we have two mutually exclusive output variable
subsets. The first consists of six output variables counting the number of treated patients
according to their age group. The second subset consists of the variable weighted sum of
operations completed including all the treatments counted in the first subset. Instead of
measuring the treated patients in the aforementioned age groups, the variable in the
second output variable subset counts individual operations that were completed in 2010.
In addition, the counted operations are weighted by a cost factor that takes into account
varying costs between different dental care operations (e.g. root treatment vs. tooth
extraction).

5.2. Analyses

In order to illustrate the differences between different DEA models, we ran several
example results from the provided dataset. We wanted to sustain some degree of
simplicity and thus decided not to conduct all possible DEA analyses with all possible
variable combinations. Therefore, we selected numbers of different dental care
personnel groups as our main input variables and weighted sum of operations completed
as our main output variable. However, for the sake of curiosity, we ran an additional
CCR-I analysis in which we used total costs instead of personnel numbers as an input
variable to compare the obtained results with each other.

5.2.1. Variable selection

For analyses, we had to choose between overlapping variables in our dataset. As
mentioned before, selected input variables were 1) Number of dentists, 2) Number of
dental hygienists, and 3) Number of dental assistants. Our decision to choose these
variables instead of total costs was based on two reasons. Firstly, single input variable
would not have allowed us to illustrate the feature of DEA that allows variable weights
to vary in the positive real axis. Secondly, personnel numbers are indifferent to different
wage levels between geographical areas. If we want dental care to be offered
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everywhere in Finland, wage levels should be taken as given and thus they should not
be included in analyses.

For the output variable selection we had two different options. The first subgroup
contained numbers of treated patients according to their age group. As described earlier
in this report, DEA allows variable weights to vary in the allowed space. We did not
want to base our results on data that allows DEA models to consider different age
groups of patients as more important than other age groups. If we wanted to use these
numbers of treated patients as our output variable, these age groups should have been
combined into single variable containing all the treated patients no matter what is their
age group. However, in the end we decided to choose weighted sum of operations
completed as our main output variable due to the fact that it in a sense contains the
aforementioned figures and in addition takes into account varying costs between
different dental care operation types.

5.2.2. CCR-1

Basic CCR-1 (input oriented CCR) results are presented in Appendix 2. The most
notable detail is that 5 DMUs out of 33 are considered as efficient. The all five are
categorized as small (C) or medium-sized (B) DMUs. Otherwise ranking does not seem
to obey any specific pattern. The worst-performing DMU, A6, got an efficiency score of
0.604, which means that in relation to the efficiency frontier it can produce only 60.4%
of output with the same amount of input. Average efficiency score in these results was
0.85997 with standard deviation of 0.1095.

5.2.3. CCR-I- Largest DMUs

As the DEA should be applied to a group of to some degree similar DMUs, we wanted
to test how it affects the efficiency scores of large DMUs (category A) and their relative
rankings in case only large DMUs were included in the analysis. Figure 5 and Table 3
below present the efficiency scores of the CCR-I analysis conducted only for the group
of large DMUSs. Table 3 also lists the efficiency scores received in the original CCR-I
that included all the DMUs.
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Figure 5: CCR-I efficiency scores of the largest DMUs

Table 3: CCR-I efficiency scores
of the largest DMUs

DMU  SCORE SCORE I
ORIGINAL CCR
A2 1 0973
A5 1 0,8809
A4 08448 0,7911
AT 0,702 0,7256
Al 07562 0,7330
A3 07475 0,7170
A6 07153 0,6037

As we can see in the Table 3, large DMUs seem to receive consistently higher
efficiency scores if the largest DMUs are compared only with each other. However, the
ranking order within the group of large DMUs remains the same with only one
exception: DMUs A7 and Al change places. However, the efficiency difference
between these two DMUSs is relatively small in the both results.

5.2.4. CCR-I- Weighted sum of operations vs. total costs

Since the input variables in our dataset overlapped to some extent, we wanted to
validate our results by producing similar CCR-I results where total costs would replace
the personnel input variables. Intuitively it would be reasonable to expect somewhat
similar results to original CCR-I results. These alternative CCR-I results are presented
in Appendix 6.

If we compare these two sets of results, we can see that differences in efficiency scores
and ranking vary quite a lot. The DMU CL1 experiences the most radical change in its
efficiency score and ranking. Its efficiency score decreases by 29.8 percentage points
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compared to the original CCR-I results. At the same time, its ranking decreases by 21
from 10" place to 31%. On average, the absolute value of the score difference is 11.2
percentage points, and the average absolute value of ranking difference is 7.5.

These results suggest that variable selection is one of the most essential parts of a DEA
analysis.

5.2.5. BCC-1

Basic BCC-I results are presented in Appendix 3. Compared to our results from original
CCR-1, BCC-I seem to double to amount of efficient DMUs. Now also the biggest
DMUs seem to perform relatively better than in CCR-I model. Three DMUs from the
category A received the best efficiency score, 1. Taking into account that the category A
itself is quite small, as it contains only seven DMUSs, large DMUs seem to perform
relatively well when efficiency scores are determined using BCC model.

Another notable detail is that the worst performing DMUs perform a bit better than in
the results determined with CCR-I. Average efficiency score in BCC-I results was
0.9039 which means that on average each DMU got 4.4 percentage points higher
efficiency score compared to CCR results. Standard deviation of the scores was 0.1046.

The received BCC-1 results are in line with the theory discussed earlier in this report. As
BCC allows variable returns to scale, efficiency scores are at least as high as in CCR
results.

5.2.6. Weight restricted BCC-1

In basic CCR and BCC models, variable weights are allowed to vary in non-negative
real axis. Intuitively this allows efficiencies to be measured in points where importance
differences (weight differences) between variables are irrelevantly large. In order to
gain understanding on how deep impact variable weight restrictions have on results, we
conducted another BCC-I efficiency measurement with the following input variable
weight restrictions:

Number of dentists

1< <
Number of dental hygienists

Number of dentists

1< - <
Number of dental assistants

05 < Number of dental hygienists <
" 7 Number of dental assistants ~

For example the first restriction means informally that in the measurement, dentists are
considered at least as important as dental hygienists but at maximum five times as
important. We do not state that these are the correct boundaries for the weights but



Hynninen, Ollikainen, Putkonen, Tenhola, VVah&-Vahe 23

instead we want to illustrate their effect on the results. The constraints were invented
without expert opinions.

The results of Weight Restricted BCC are presented in Appendix 4. Compared to the
basic BCC the number of efficient DMUs drops by three. On average DMUs are 4.15
percentage points less efficient as the average efficiency score drops to 0.8624 with
standard deviation of 0.1122. Interesting detail is that every DMU in our sample
receives the same or lower efficiency score than in the basic BCC results, even though it
could have been possible to receive higher scores since irrelevant variable weights no
more define the efficient frontier.

As a result of the weight restrictions, DMUs that performed significantly worse were
the ones having a single personnel group of relatively small size. In the basic BCC these
DMUs received higher cores without justifications due to the BCCs ability to emphasize
that single input variable over the others.

Compared to basic CCR results, average efficiency scores are quite close to each other.
Major difference is that Weight Restricted BCC allows also larger DMUs to be
considered as efficient entities, even though the relative output/input ratio is smaller in
comparison with smaller efficient DMUs.

5.2.7. REA - Ranking intervals

Also REA’s ranking intervals feature was applied to the obtained dataset. Produced
results can be observed in the Appendix 5. When generating REA ranking intervals
results, the same variable weight restrictions were in place as in the WR-BCC results.
The figure in the Appendix 5 demonstrates well how illustrative charts REA ranking
intervals feature can produce to support decision making. The shorter the bar the more
reliable the best ranking is in relation to other DMUSs.

5.3. Discussion

In general our derived results are in line with the theory discussed earlier in the report.
Due to the small sample size, no comprehensive implications can be made but important
details can be emphasized.

In our results BCC generated higher efficiency scores than CCR, and in addition
allowed large DMUSs to produce smaller amount of output in relation to smaller DMUs.
The decision between CCR and BCC is in our opinion political rather than technical -
do we want to accept that large DMUs cannot achieve as high output/input ratios as
small DMUs, and let that affect our decision making?
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BCC in a sense compares DMUs to other DMUs which consume approximately similar
amount of input. We applied the same principle to our sample in CCR model by
comparing only large DMUs to each other. Even though large DMUs received higher
efficiency scores, their relative rankings and efficiencies remained within the group of
large DMUs quite much the same. The results did not give a strong signal that dividing
a sample to subgroups of DMUs according to their sizes would add any value to the
efficiency measurement.

Our view is that there is no good reason not to exploit the option of using weight
restrictions. Excluding clearly irrelevant weight combinations will increase the quality
of the results. Intuitively it seems that the higher the number of variables the more
important the weight restrictions are to prevent too large emphasis on a single variable.

Our test of using different input variables representing partly the same input efforts
resulted in very different efficiency scores and rankings. This indicates that variables
are to be chosen with great consideration.

Finally, if the CCR model (constant returns to scale) is preferred over the BCC (variable
returns to scale), then the REA model should be considered also. The REA is based on
the assumption of constant returns to scale and produces the same results as the CCR
but in addition provides very illustrative ranking intervals and pair dominances.
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6. Conclusion

The purpose of this study was to help THL to identify the most appropriate DEA
models for analyzing the efficiency of Finnish health care units. The aim was not only
to compare the applicability of different DEA models but also to understand more
deeply the characteristics of each model. In addition, the applicability of the bootstrap
method for sensitivity analysis was studied, and the applicability of the REA model for
producing more robust results was examined.

During this study, all the objectives presented in the beginning of the study have been
accomplished. First, comprehensive literature review was conducted both on the
mathematical background of DEA models and on efficiency studies in healthcare sector
in general. This enabled us to identify potential DEA models, gain basic knowledge
about the field, and to start working with the data provided by THL. The literature
review focused specifically on DEA models of CCR, BCC (returns to scale) and weight
restrictions, and on methods of bootstrapping and REA. Second, data analyses were
conducted based on the data provided by THL. The data analyses enabled us to observe
the applicability of different DEA models.

Based on the literature review and data-analyses conducted, it can be concluded that the
answer to the research question is far from straightforward. First of all, it can be stated
that the use of the variable returns-to-scale methods (for example BCC) can be justified
if the aim is to compare different units of a very wide scale and it is sure that the scale
of units affects the performance more than other external factors. However, the
assumption of variable returns to scale is very strong and it can lead to flawed results if
applied without a proper consideration. That is why constant returns-to-scale models
(for example CCR and REA) are safer choices. If the scale is expected to be an
important factor, one can divide the units to categories based on their size and use CCR
within each category and get comparable results. However, if the CCR model is chosen
for the efficiency analysis, it is better to switch completely to the REA model since it
provides not only the same results as the CCR but also other information, such as
ranking intervals, dominances, and efficiency intervals. Finally, the findings of this
study support the use of weight restrictions if they are chosen carefully. By using
conservative weight restrictions, irrelevant weight combinations can be eliminated.

According to the literature review, the bootstrap-method is applicable for sensitivity
analysis in non-parametric frontier analysis, and for constructing confidence intervals
for the DEA efficiency scores. The method has been applied also multiple times in
studying different health care units. These findings suggest that the bootstrap-method is
highly potential for studying the efficiency of health care units in Finland. However, the
bootstrapping was not utilized in the data-analysis during this study, and no empirical
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evidence can be provided to support the preceding conclusions. Therefore, future
research could study the applicability of the bootstrap-method even further by utilizing
it in data-analysis of Finnish health care units.
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Appendix 1: Dataset provided by THL

OUTPUT INPUT
Number of treated patients in age group si Weighted Total . Dental Dental
sum _Of costs Dentists hygienists | assistants
DMU coded | sl s2 s3 s4 s5 s6 operations

Al 12842 | 42555 | 50984 | 23741 | 7302 | 6662 720093 44975290 153,0 72,2 3253
A2 6668 | 20364 | 23226 | 11095 | 2988 | 1418 383983 17502985 61,0 29,3 97,8
A3 8940 | 22421 | 24223 | 10806 | 3564 | 2787 335847 19318817 74,3 335 125,4
Ad 6450 | 16580 | 17018 | 7313 | 2044 | 2013 255905 12227155 52,8 22,1 83,1
A5 3716 | 13339 | 16712 | 5758 | 1767 | 1273 242502 10507410 51,5 15,0 82,0
A6 1 1 44689 | 1393 48 3 232321 10776823 69,0 22,0 99,0
A7 5107 | 14107 | 13581 | 6532 | 2075 | 1996 206113 9689196 46,4 194 104,2
B1 3213 | 9305 | 11602 | 6411 | 1682 | 1475 186201 6237909 28,2 16,4 45,0
B2 3140 | 9648 | 8411 | 5109 | 1760 | 1961 171424 5980705 254 13,5 42,4
B3 2314 | 7061 | 10662 | 5230 | 1464 | 1420 147874 6176656 24,8 14,0 41,0
B4 2283 | 7760 | 7053 | 4493 | 1018 | 223 124524 4016639 22,5 7,0 27,5
B5 2862 | 7832 | 7965 | 3257 | 1292 | 958 121078 5459737 20,9 7,9 29,8
B6 2634 | 6411 | 5201 | 3585 | 1488 | 988 114151 5224168 235 12,0 38,0
B7 2034 | 7261 | 6588 | 5957 | 2095 | 1638 105407 4611923 19,6 9,3 34,7
B8 1792 | 4946 | 4301 | 4152 | 1405 | 885 101510 4119416 17,0 7,0 21,0
B9 1316 | 5258 | 4401 | 2974 | 821 | 472 101301 4030731 20,9 8,0 27,3
B10 1659 | 5423 | 5857 | 4100 | 1149 | 819 100976 4067604 20,1 5,7 29,9
C1 1614 | 5202 | 5541 | 3868 | 1301 | 844 91062 4404700 20,3 5,3 23,3
Cc2 2286 | 5580 | 5170 | 3489 | 962 | 1053 90271 4003397 111 9,6 28,0
C3 1260 | 4063 | 4605 | 3475 | 997 | 656 85070 4058438 16,5 6,0 30,5
C4 2006 | 4927 | 3892 | 2918 | 990 | 725 84606 0 18,5 6,0 325
C5 1478 | 5418 | 4887 | 3373 | 1056 | 806 80949 3109573 16,8 5,8 26,4
C6 1711 | 4603 | 4678 | 2523 | 786 | 635 80322 3655996 16,0 6,6 22,3
Cc7 2096 | 5906 | 5143 | 1975 | 723 | 375 78929 3303651 17,2 6,0 28,3
C8 1973 | 4522 | 3470 1790 | 557 | 438 74428 2468876 12,3 8,6 19,2
C9 1757 | 4533 | 4421 | 2569 | 575 | 355 71949 3415670 20,0 7,0 31,0
C10 973 3551 | 4274 | 2443 | 721 | 340 66338 2645655 14,2 7,0 17,0
Cl1 1853 | 4711 | 3885 | 2516 | 745 | 458 65953 2747867 13,8 5,8 151
C12 1258 | 3962 | 3273 | 2309 | 711 | 554 63453 2668673 0,0 0,0 0,0
C13 1418 | 4429 | 3223 | 2431 | 618 | 597 60085 2598221 15,0 4,0 21,0
C14 878 2328 | 1987 | 1565 | 506 | 403 49912 1957640 9,7 5,8 12,5
C15 1129 | 2963 | 2810 | 1517 | 593 | 429 48061 1897774 10,5 5,0 13,0
C16 1019 | 2979 | 2788 | 1898 | 501 | 358 39455 1393346 8,0 2,0 18,0
C17 823 2070 1761 1582 524 | 453 33247 1448845 54 4,2 9,5




Appendix 2: Example results, CCR-I

Input variables: 1) number of dentists, 2) number of dental hygienists, 3) number of dental
assistants

Output variables: 1) weighted sum of completed operations (operations weighted by cost factor)
Weight restrictions: none

Scores CCR-I B2 1

B4 1

A6 B8 1
© c2 1

A3 C16 1
A7 B1 0,9984

B6 W B5 0,9814

Al A2 0,9734
c15 B10 0,9729

A4 C1 0,9647
c7 C8 0,9221
C10 Cl1  0,9018
c4 C17  0,8951
c13 B3 0,8873
B9 C3 0,8853
c6 A5 0,8809
Cl4 0,8481

B7 W
C5 0,8420

C5
Ci4
Co6 0,8282

A5
1 B9 0,8228

C13 08211

& C4 08156
“7 Cl10  0,8073
i C7  0,8001
c8 A4 0,7911
¢ C15 0,7659

B10 W Al 0,7330

A2 B6 0,7329
B5 A7 0,7256

B1 A3 0,7170
C16 C9 0,6258
2 A6 0,6037

B8

B4
B2




Appendix 3: Example results, BCC-I

Input variables: 1) number of dentists, 2) number of dental hygienists, 3) number of dental
assistants

Output variables: 1) weighted sum of completed operations (operations weighted by cost factor)
Weight restrictions: none

o) Sor

Scores - BCC-I Al 1

A2 1

@ A5 1

A6 Bl 1

A7 B2 1

B6 B8 1

c7 C2 1

A4 ci6 1

ca C17 1
B9 C1 0,9965
B7 Cll  0,9927
s B10  0,9905
e Cl4  0,9858
10 B5 0,9849
6 C15  0,9468
o C8  0,9439
s C13  0,9074
B3 0,8884
€15 W C10 08874
% C6 08571
i C5 08570
B10 B7  0,8464
i B9  0,8300
c C4 08261
¢ Ad 0,8179

Cl6 W c7 0,8145

€2 B6 0,7451
B4 W A7 0,7366
B2 A6 0,6902

B1 C9 0,6426

A5

A2
Al




Appendix 4: Example results, BCC-1 with weight restrictions

Input variables: 1) number of dentists, 2) number of dental hygienists, 3) number of dental
assistants

Output variables: 1) weighted sum of completed operations (operations weighted by cost factor)

Weight restrictions:

1) 1 < (dentists/assistants) < 5; 2) 1 < (dentists/hygienists) < 5; 3) 0,5 < (hygienists/assistants) < 5

A6

Cc9

A7

A3

B6

c4

C13

Ad

B7

B9

A5

C5

c10

Cc3

C1

cé

C15

B10

B3

C11

C14

c8

Cle

B5

B4

Cc17

C2

B8

B2

B1

A2

Al

Scores - WR-BCC-I

DMU Score
Al 1

A2 1

B1 1

B2 1

B8 1

C2 1

C17 1

B4 0,9946
B5 0,9657
C16 0,9582
C8 0,9287
C14 0,9168
C11 0,9090
B3 0,8851
B10 0,8830
C15 0,8682
C6 0,8523
C1 0,8506
C3 0,8455
C10 0,8323
C5 0,8312
A5 0,8233
B9 0,8193
B7 0,8190
A4 0,7890
c7 0,7865
C13 0,7791
C4 0,7764
B6 0,7401
A3 0,7203
A7 0,6646
C9 0,6318
A6 0,5892




Appendix 5: Example results, REA Ranking Intervals with weight restrictions

Input variables: 1) number of dentists, 2) number of dental hygienists, 3) number of dental

assistants

Output variables: 1) weighted sum of completed operations (operations weighted by cost factor)

Weight restrictions:
1) 1 < (dentists/assistants) < 5; 2) 1) 1 < (dentists/hygienists) < 5; 3) 1) 0,5 < (hygienists/assistants)

<5
DMU Ranking
REA - Ranking Intervals (weight
restricted) B2 1 3
B8 1
H803=53028800805082338380808382308%¢ c 1 1
0 tgpgg——————————— B4 2
1 4 B1 3
2 B5 4
3 A2 4
4 - cuu 7 17
> B3 8 11
6 1 cs 8 12
7 B0 8 13
81 cT 8 18
? c17 10 20
10 c6e 11 16
1 il cl4 11 22
12 .
- il B7 12 19
" il ca 12 23
o il B9 13 16
. il A5 16 23
; il A4 17 23
18 il cio 17 25
19 il cs 18 20
20 - Ccl5 18 26
21 - Ccl16 19 29
22 || c7 23 26
23 B6 24 27
24 c4 24 27
25 C13 26 30
26 A3 28 29
27 Al 29 30
28 c9 31 32
29 A7 31 33
30 A6 32 33
31
32

w
w




Appendix 6: Example results, comparison of two sets of CCR-I results
Weighted sum of operations vs. total costs:
Input variables: Total costs; Output variables: Weighted sum of completed operations
Weighted sum of operations vs. personnel:
Input variables: Number of dentists, Number of dental hygienists, Number of dental assistants;
Output variables: Weighted sum of completed operations

Weighted sum of operations vs. total Weighted sum of operations vs.

Change in Change in
costs personnel

score ranking

Al 0,5164 33 0,7330 28 -0,2166 +5
A2 0,7076 24 0,9734 8 -0,2657 +16
A3 0,5608 32 0,7170 31 -0,1562 +1
A4 0,6751 30 0,7911 26 -0,1160 +4
A5 0,7444 18 0,8809 16 -0,1365 +2
A6 0,6954 26 0,6037 33 +0,0916 =1
A7 0,6862 27 0,7256 30 -0,0395 -3
B1 0,9628 3 0,9984 6 -0,0356 =2
B2 0,9246 4 1 1 -0,0754 +3
B3 0,7722 14 0,8873 14 -0,1150 0
B4 1 1 1 1 0 0
B5 0,7153 22 0,9814 7 -0,2661 T3
B6 0,7048 25 0,7329 29 -0,0281 -4
B7 0,7372 20 0,8358 19 -0,0985 +1
B8 0,7948 12 1 1 -0,2052 +11
B9 0,8107 9 0,8228 21 -0,0121 -12
B10 0,8007 11 0,9729 9 -0,1721 +2
C1 0,6669 31 0,9647 10 -0,2978 +21
Cc2 0,7273 21 1 1 -0,2727 +20
C3 0,6761 29 0,8853 15 -0,2092 +14
C4 #N/A #N/A 0,8156 23 #N/A #N/A
C5 0,8397 6 0,8420 18 -0,0023 -12
C6 0,7087 23 0,8282 20 -0,1196 +3
C7 0,7706 15 0,8001 25 -0,0294 -10
C8 0,9724 2 0,9221 11 +0,0503 -9
C9 0,6795 28 0,6258 32 +0,0537 -4
C10 0,8088 10 0,8073 24 +0,0015 -14
Cil1 0,7742 13 0,9018 12 -0,1276 +1
Ci12 0,7669 16 #N/A #N/A #N/A #N/A
C13 0,7459 17 0,8211 22 -0,0752 -5
C14 0,8224 7 0,8481 17 -0,0258 -10
C15 0,8169 8 0,7659 27 +0,0510 =19
C16 0,9134 5 1 1 -0,0866 +4

C17 0,7402 19 0,8951 13 -0,1549 +6




